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PT
ER1 Introduction

Stars are the fundamental unit of astronomy. In this thesis I will explore the
nature of various types of collapse on stars and star systems.

Stars can be found alone, individual bodies moving through space; or they
can be gravitationally bound to one or a few other stars, moving through space
together. Of particular interest here are stars in groups of three. Such triple
systems can be found in different configurations; the stars may all have orbits,
about their collective center of mass, of comparable size in which case the sys-
tem is very likely to be dynamically unstable due to strong interactions between
the stars, though there are some configurations of this type which are stable they
occupy a very small fraction of the relevant orbital parameter space. In a hier-
archical triple on the other hand, the stars have orbits such that the inner two
stars are relatively tightly bound while the third star is much farther away, this
tends to produce dynamically stable systems.

If one of the stars in a hierarchical triple, or any other stable multiple sys-
tem, undergoes a supernova—wherein the star’s core begins to collapse and
then rebounds producing an incredibly powerful explosion—causing the star
to almost instantaneously lose the majority of its mass the dynamical stability
of the system is placed in jeopardy due to the change in the gravitational force
between the stars. is effect in binary systems has been studied many times
by Blaauw (1961) and Boersma (1961), Hills (1983), and Tauris and Takens
(1998). Complicating matters are the effects of the shell impact on the com-
panion and the supernova kick.

After the supernova the remnant core of the star may become a neutron
star, and if that neutron star has a companion which evolves and begins to
overflow its Roche lobe causing material to be accreated onto the neutron star
it may begin to rotate faster and faster from the transfer of angular moment
from the accreating material. is is the suggested formation mechanism for a
class of objects called millisecond pulsars. ese objects rotate once every few
milliseconds.

However, if the supernova progenitor was massive enough, around 20 M⊙,



it would not form a neutron star but it would collapse into a stellar mass black
hole. ere are three astronomically relevant classes of black holes, stellar mass,
intermediate mass, and supermassive. Stellar mass black holes have masses
<50 or 100 M⊙; supermassive black holes have masses >106 M⊙; and inter-
mediate mass black holes have masses between those ranges. Supermassive and
stellar mass black hole have been identified with strong constraints placed on
their masses, however intermediate mass black holes have never been defini-
tively identified.

Currently there are several intermediate mass black hole (IMBH) candi-
dates; currently the strongest IMBH candidate is the hyperluminous X-ray
source HLX-1 with mass estimates generally given to be between some 103 and
105 M⊙. M82 X-1 is also a strong IMBH candidate with mass estimates rang-
ing from a couple ×102 and 103 M⊙.

e collapse of star clusters is the result of there being too little kinetic en-
ergy relative to potential energy. We know from the virial theorem that in a
stable system the time-averaged kinetic energy will be 1/2 the potential energy
of the system. If the stars in a cluster have too little kinetic energy, meaning it
is subvirial, the system will contract. e inverse is also true, if the stars have
too much kinetic energy, supervirial, the system will expand. When a system
is subvirial it will experience a radial contraction and a corresponding phase of
high density, the collapse, during which time extreme dynamical processes can
occur, including violent relaxation.

Violent relaxation was coined by Lynden-Bell (1967) to describe the “vi-
olently changing gravitational field of a newly formed galaxy”. e theory is
rooted in the idea that stars in a collapsing model may be treated as a large set
of independent, non-interacting harmonic oscillators. ese oscillators treated
statistically are expected to find a state of maximum entropy. us in a subvirial
cluster we would expect to find the effects of violent relaxation.

One possible effect of violent relaxation is very rapid mass segregation1 of
the cluster. Mass segregation has been observed in young clusters, whose age
constrains the more common mechanism for mass segregation, i.e. two-body
relaxation. It was suggested (Bonnell and Davies 1998) that such rapid mass
segregation was not the result of a dynamical mechanism, however this was
found to be incorrect by Allison et al. (2009a). What had remained not well
understood was when during the collapse, and exactly by what mechanism this
rapid dynamical mechanism was occurring.

Two different mechanisms were suggested, which occur at different times

1where massive objects are statistically more likely to be found near other massive objects
than objects of arbitrary mass
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Introduction

during the collapse. Allison et al. (2009a) first suggested that subvirial collaps-
ing clusters mass segregate more quickly than might be expected due to the
dense core formed as the end of the collapse. Whereas, McMillan et al. (2012)
claimed that this rapid mass segregation happens not around the time of the
“high density bounce”, but rather during the entire collapse via the formation
of subclumps which mass segregate independently.

In order to investigate and hopefully gain some understanding of these physi-
cal systems we have employed the use of computer simulations. We have used
codes that calculate the pair-wise gravitational force between stars, codes that
model the evolution of stars, and codes which solves sets of analytic solutions
we developed to calculate the effects of a supernova in a hierarchical triple.
Most, if not all, of this work would be impossible to complete without efficient
codes to run, and at least once we had to develop new methods which were fast
enough to run the analysis we needed.

With the exception of Chapter 5 all the simulations presented in this work
were run in the AMUSE environment. AMUSE is a modular simulation plat-
form which, through a PYTHON interface, links together to a set of simula-
tion codes. Different codes can easily be used on the same initial conditions, al-
lowing for a fast, simple, and clear test of consistency between codes; AMUSE’s
modular nature makes this easy to do, usually requiring a change to only two
lines of code.

e benefit of its modular design is not only being able to test, and thus
verify, different codes against one another, but also the ease with which one
can add additional physics. For example, including stellar evolution in a hydro-
dynamics simulation is relatively easy compared to having to merge two codes
together by hand.

1.1 This Work

1.1.1 Initial Virial Temperature (Chapter 2)

We investigate the effect of the initial virial temperatures on the dynamics of
star clusters and find a strong relationship between the initial virial temperature
and many dynamical processes. We investigate in depth the likely initial virial
temperature of the young cluster R136 along with 15 other young clusters; we
find that the most likely value for the initial virial temperature in all of the
clusters we tested to be between ≈0.18 and 0.25.

- 3 -



1.1 This Work

1.1.2 Mass Segregation in a Collapsing Cluster (Chapter 3)

Building off of the simulations from Chapter 2 we attempt to isolate the mech-
anism by which rapid mass segregation occurs in young clusters. In order to
measure the mass segregation for the large data sets we had it was necessary to
first develop a new method for measuring the systems mass segregation. We
detail the increase in accuracy in measuring mass segregation in complex sys-
tems as well as the dramatic increase in speed from our new method. After
performing a computational experiment we are able to show the greater role
the dense part of the collapse plays in rapid mass segregation.

1.1.3 The Number of IMBHs (Chapter 4)

In this chapter we make an estimate of the number of IMBHs within 100 Mpc,
based on the nature of HLX-1 and M81 X-1, and stellar evolution simulations.
We expect, within the limits of our assumptions, that there should be of order
108 IMBHs within that volume. Furthermore, from the results of our simula-
tions we find a constraint on the mass of HLX-1’s proposed stellar companion
to have a mass between ≈10 and 11 M⊙.

1.1.4 Supernova in Hierarchical Star Systems (Chapter 5)

We explore, for the first time, the effect of supernova on higher multiplicity
hierarchical systems. In doing so we develop analytical methods to calculate
the orbital parameters for systems that remain bound and the runaway veloc-
ities for systems that become dissociated after the supernova. We apply these
methods to the case of the unusual millisecond pulsar J1903+0327 and con-
firm that it could have formed from a triple and constrain many of the system’s
pre-supernova parameters.

- 4 -







C
HA

PT
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tial Conditions and the Birth
Temperature of R136

We investigate the effect of different initial virial temperatures, Q, on the dynamics
of star clusters. We find that the virial temperature has a strong effect on many as-
pects of the resulting system, including among others: the fraction of bodies escaping
from the system, the depth of the collapse of the system, and the strength of the mass
segregation. ese differences deem the practice of using “cold” initial conditions no
longer a simple choice of convenience. e choice of initial virial temperature must be
carefully considered as its impact on the remainder of the simulation can be profound.
We discuss the pitfalls and aim to describe the general behavior of the collapse and the
resultant system as a function of the virial temperature so that a well reasoned choice
of initial virial temperature can be made. We make a correction to the previous theo-
retical estimate for the minimum radius, Rmin, of the cluster at the deepest moment
of collapse to include a Q dependency, Rmin ≈ Q+N (−1/3), where N is the number
of particles.

We use our numerical results to infer more about the initial conditions of the
young cluster R136. Based on our analysis, we find that R136 was likely formed with
a rather cool, but not cold, initial virial temperature (Q ≈ 0.13). Using the same anal-
ysis method, we examined 15 other young clusters and found the most common initial
virial temperature to be between 0.18 and 0.25.

In collaboration with:
Nathan de Vries & Simon Portegies Zwart.

MNRAS 445, 674 (2014)



2.1 Introduction

2.1 Introduction

Subvirial systems are often used as initial conditions in numerical simulations
for both physical and practical reasons. Before the phase of gas expulsion, young
stellar clusters must be formed subvirial, since the parent molecular cloud was
roughly in virial equilibrium and supported by both gas pressure and (turbulent
and systematic) velocities. e resultant stellar cluster is no longer supported
by gas pressure, but only by the velocities of the stars, and therefore the energy
balance must shift to subvirial.

In practice, subvirial conditions are also used to reduce the computational
cost of reaching a mass segregated or otherwise relaxed system. is is because
with cold initial conditions mass segregation is established on a free-fall time-
scale, but virial systems relax and reachmass segregation on amuch longer time-
scale. Until now the consequence of changing the initial virial temperature has
often been considered insignificant and so physical justification is not given.

If for example, an experiment is designed to investigate mergers (Porte-
gies Zwart et al. 1999; Bédorf and Portegies Zwart 2013) (or another physical
phenomenon preferentially occurring in mass segregated systems) the evolu-
tion of the system between mergers (or until the system is relaxed) is a time-
consuming phase with little scientific value. Since the time until the system
segregates and violent relaxation is quenched is much shorter for a cold system
than for a virial system, using cold initial conditions could, in the past, be a
shortcut to the interesting part of the simulation. While these methods may be
justified in some cases we are left to wonder if it is in general a valid approxi-
mation to the desired physical system. Or for the case of mergers, what effect
a free falling interaction, i.e. when using cold initial conditions, may have on
impact parameters that a more gentle spiralling interaction, as in the case of
warmer initial conditions, may not have.

2.1.1 Violent Relaxation

Lynden-Bell (1967) attempted to explain the “observed light distributions of
elliptical galaxies” and in doing so produced the first theory to describe the
steady state resulting from a collisionless gravitational collapse. In that pio-
neering work we find the first use of the term violent relaxation to describe the
“violently changing gravitational field of a newly formed galaxy”. e funda-
mental premise of the theory is that the stars in a galactic model may be treated
as a large set of independent, non-interacting harmonic oscillators. ese os-
cillators are treated statistically and are expected to find a state of maximum
entropy. e weakness of the theory lies in the last statement. During the col-
lapse the system does not have enough time to explore the phase space and so
will not generally come to equilibrium in the predicted state.

- 8 -
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Since the work of Lynden-Bell (1967) several other attempts have been
made to extend, modify, and completely rework the theory of violent relaxation
(e.g. Spergel and Hernquist 1992; Nakamura 2000; Treumann and Baumjo-
hann 2013). In spite of these efforts, difficulties remain in constructing a the-
ory which adequately describes the behavior of what may seem at first glance,
a simple system (Arad and Lynden-Bell 2005; Arad and Johansson 2005).

2.1.2 Notation

We recall that the virial temperature is Q ≡ |T/V |, where T and V are the
kinetic and potential energies, respectively, and that a system in virial equilib-
rium has a Q value of 0.5. Note that just because the energetics of the system
is in equilibrium does not imply that the system as a whole is in equilibrium.
For example, a system with a Q value of 0.5 can still be out of equilibrium if
the system has a uniform density distribution (homogeneous sphere), as used
in this paper, this is because the homogeneous sphere is not a solution to the
Fokker–Planck equation.

We define the term fraction of virial (FoV) to be the current system’s Q
value over the Q value of a virialized system, or simply 2Q. is definition
conveniently results in a virialized system having a FoV= 1. We also define the
term velocity multiplier, k, as the value the velocity is initially multiplied by to
change the system from virial, that is: k = v/vvir, vvir is the virial velocity of
a particle. So we find that initially

FoV =2Q = 2

∑
i
1
2mi(kvi)2∑

i Vi

= k2 × 2Qvir = k2.

2.2 Simulations

2.2.1 AMUSE

Our simulations were run in theAMUSE software environment (Portegies Zwart
et al. 2012). AMUSE is a modular simulation platform which provides a set of
simulation codes linked together through a  interface. Different codes
can be used on the same initial conditions, allowing for a fast, simple, and clear
test of consistency between codes; AMUSE’s modular nature makes this easy
to do, usually requiring a change to only two lines of code. For example, we
tested our simulations with three different N-body integrators, namely: H-
 (Hut et al. 1995), PGRAPE (Harfst et al. 2007), and  (McMillan
in preparation). Again the AMUSE framework ensured the changes to the
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code were trivial, and by testing with different integrators we obtain an assur-
ance that our results are not code-dependent, since all three codes gave similar
results. When using the same set of initial conditions for example, plots of the
half-mass radius versus time are nearly indistinguishable, and the number of
bound particles at the end of the simulation never differ by more than 55 parti-
cles and on average differ by fewer than nine particles (less than 0.37 and 0.06
per cent of the total number of particles respectively). We are now comfortable
to assert that the results we present within this work are not the effect of a bug
or a strange implementation found in one code, but represent the outcome of
physical processes acting on our initial conditions.

All the data presented in this work were produced using . A parallel
fourth-order H integrator  can, and for us does, use GPUs to ac-
celerate the computational work (this is accomplished through the use of the
Sapporo library (Gaburov et al. 2009, 2012, Bédorf in preparation)). We find
it important to use a direct integrator for these simulations, as opposed to a
tree code, because strong interactions play a role in the systems we aim to in-
vestigate. In the analysis, we made extensive use of the group finding code hop
(Eisenstein and Hut 1998). e runs were performed on the Little Green Ma-
chine, a local GPU cluster using NVIDIA GPUs.

2.2.2 Initial Conditions

As this paper is focused on the effect initial conditions have on the resultant
physical system we thought it only appropriate to explain exactly how the ini-
tial conditions presented within these pages were created. We chose the initial
conditions in the following way: a number of particles are distributed in a ho-
mogeneous sphere. A homogeneous sphere is used in order to isolate the effects
of violent relaxation which can becomemuddled when usingmore complex dis-
tributions. e mass of the whole system is set to 1.0 N-body mass (Heggie and
Mathieu 1986) and either the mass is divided equally amongst all star particles
or, in order to study the effects of a more realistic mass function, a Salpeter
mass function, having a slope of 2.35 (Salpeter 1955), with a mass range N-
body mass equivalence between 0.3 and 100 M⊙ is applied or the mass is di-
vided equally amongst all star particles. Each particle is given a velocity drawn
randomly from a Gaussian distribution centered at zero, producing an isotropic
velocity distribution. If a black hole has been included, it is given a velocity of
zero and placed at the center of the cluster. en the whole system is scaled
to be in virial equilibrium. Finally, all unbound particles (particles with an en-
ergy > 0) are removed; this is the only time that particles are removed from the
system. ese particles, along with their position and velocity, are saved to a
file. We repeat this procedure with different random initializations always re-
quiring that the final number of objects bound to each system be the number

- 10 -
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Table 2.1: Outline of Simulations

No. of runs No. bound Density Mbh Mass function
particles [N-body mass]

4× 21 15210 Uniform 0 Equal mass
4× 21 15210 Uniform 0 Salpeter
4× 21 15210 Uniform 0.02 Equal mass
4× 21 15210 Uniform 0.02 Salpeter
21 15210 Uniform 0.05 Salpeter
21 15210 Uniform 0.10 Salpeter
21 15210 Plummer 0.02 Salpeter
21 15210 King (ω = 6) 0.02 Salpeter
21 2048 Uniform 0.02 Salpeter
21 4096 Uniform 0.02 Salpeter
21 8192 Uniform 0.02 Salpeter
7 131072 Uniform 0.05 Salpeter

of objects desired ±5 (never differing by more than 5). Each set of initial con-
ditions is produced four times, each with a different random realization of the
particle positions to quantify the effects from initial position on the evolution
of the system and to measure the statistical noise.

Before the start of the simulation, the velocities are scaled to whatever Fo
Vis being investigated in that run, that is we multiply the velocity by k, the
velocity multiplier. Using the same set of initial conditions for an entire set of
runs ensures that the differences in each simulation are only due to the differ-
ence in velocity. We use 21 values of k (from 0.0 to 2.0 in 0.1 increments) to
explore the effect of the FoV on the system. Note that for the supervirial runs
particles may be initially unbound, and in many of the subvirial cases particles
become unbound after some time, but these particles are never removed from
the simulation.

2.3 Results and Discussion

e simulations we ran are described in Table 2.1. Column 1 gives the number
of runs performed with each set of initial conditions. Each set of initial condi-
tions (save the last set) are run with 21 different FoV, ranging from 0.0 to 4.0
(Q = 0.0 − 2.0); the first four sets are simulated with four different random
realizations of the particle distribution in order to reduce statistical error. e
FoV is chosen such that the velocity multiplier, k, is equally spaced in 0.1 in-
tervals, i.e. 0.0, 0.1, 0.2,…, 1.9, 2.0. Column 2 of Table 2.1 gives the number
of bound particles at the start of each simulation (see Section 2.2.2 for more
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information about our initial conditions). e Salpeter mass function was gen-
erated with an N-body mass unit equivalent to 0.3-100M⊙. All simulations are
run for a minimum of 10 N-body time units (Heggie and Mathieu 1986) with a
data output rate of 50 snapshots per N-body time. We use a softening length, ϵ,
such that ϵ2 = 10−8 for all simulations except for the simulations with 131,072
bound particles where we use an ϵ2 = 10−16 to be sure we capture the detail of
the interactions. In total we ran 490 simulations.

2.3.1 Escape Fraction

Figure 2.1 is a plot of FoV versus the fraction of objects that remain bound to
the system after 10 N-body times. Each data point is an average of at least four
runs, and the bars indicate one standard deviation, i.e. a measure of the spread,
not the error. Figure 2.1a shows the results of simulations, with equal mass par-
ticles (save the black hole) both with and without a black hole. e black hole,
when present, contains 2 per cent of the total mass of the system. Figure 2.1b
is a plot of the same simulations with the exception that the objects’ masses are
chosen from a Salpeter mass function; again the cases with and without a black
hole are shown and the error bars represent one standard deviation. ough not
shown we also ran simulations using a black hole with 5 and 10 per cent of the
cluster mass. ese simulations showed a similar shape to the curves shown in
Figure 2.1 but generally with fewer particles remaining bound as the mass of
the black hole was increased.

We note an uptick in retained number of particles with a FoV of 0.0 versus
0.01 for the equal mass systems without a black hole, and a FoV of 0.0 versus
0.04 for systems with a Salpeter mass function without a black hole. To verify
that the uptick was not simply an artifact of our four standard realizations, 21
more runs with different random realizations were performed (for a total of 25
realizations) with a FoV = 0.0, no black hole, and Salpeter mass function. e
results of all 25 realizations are plotted for that point in Figure 2.1.

A possible interpretation for such an uptick is that when the system begins
cold (FoV = 0.0) there is no radial motion so the particles follow a nearly
free-fall trajectory towards the center of mass and so spend the least amount
of time in the very high density of the collapse. (e reduced time spent in the
highest density of the collapse for cold systems can be seen by comparing the
Lagrangian radii in both panels of Figure 2.3.) However, as the FoV increases
there is increasing radial velocity leading to an in fall trajectory which is more
spiral-like than free-fall-like. With a low but non-zero FoV still leading to a
very dense collapse and the particles spendingmore time near the center ofmass
at the time of deepest collapse the probability of interactions increases resulting
in a higher likelihood for scattering events. When a black hole is added a free-
fall path aimed directly at the center is almost a guarantee for a strong scatting
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Figure 2.1: The fraction of objects remaining bound to the system versus the Fo
V. The solid, red line is for simulations run without a black hole, and the dashed,
blue line is for simulations with a black hole of 2 per cent of the total mass of the
system. The error bars represent one standard deviation.
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event, as can be seen in the cases with a black hole (dashed, blue line) and a
FoV = 0.0.

In the cases with a mass function the fraction of mass retained by the system
is always greater than or equal to the fraction of particles retained indicating
that we keep the more massive particles preferentially and thus tend to lose
low-mass particles as expected.

We find in both panels of Figure 2.1 the effect of including a black hole
is to, in general, reduce the number of bodies remaining bound to the system,
as well as to produce more noise in the measurement. We can understand this
by noting that interactions leading to ejections between particles with similar
masses only, as is the case when a system does not possess a black hole, produce
the loss of bodies as seen in the red lines in Figure 2.1. Introducing a black
hole to a system does not change the number of interactions between particles
with similar masses and so ejection rates between such particles remain similar
to the case without a black hole. However, as the black hole interacts with
particles there is the additional case of large mass ratio interactions leading to
ejections from the system over the similar mass ejection rate baseline. us,
the reason the systems without a black hole tend to provide an upper limit on
the number of particles remaining bound to the system is due to the addition
of a strong scatter in the systems with a black hole while not changing, very
much, the probability of smaller mass ratio scattering events. e additional
noise found in these measurements of systems with a black hole is the result
of the scattering by the black hole being sensitive to the exact nature of the
interaction and thus to the random realization of the particles initial positions
and their relative velocity.

Proszkow and Adams (2009) and Adams et al. (2006) measured the num-
ber of objects that remain bound after 10 Myr for different FoV but include
additional effects such as primordial mass segregation, a static gas potential,
and gas removal. e difference in the shape of the fraction remaining bound
in Proszkow and Adams (2009) is likely due to their static gas potential and
analytic gas removal, resulting in a change of the potential energy of the sys-
tem. It seems this would be similar to a change in the initial FoV, though it is
not clear that such a simple substitution would be correct. For instance, if the
gas is removed from the system before or even shortly after the collapse (see
Figure 2.3 and Section 2.3.2 for a description of what is meant by collapse)
the system’s evolution will be different than if the gas is removed after the sys-
tem has relaxed and has reached, or very nearly reached, virial equilibrium.
Gritschneder and Lin (2013) show that the amount, time, and even region of
mass loss from a collapsing system all have a strong impact on the future evolu-
tion of the system, so using the FoV as a proxy for gas removal is very unlikely
to by physically correct. Moreover, the nature of gas removal from clusters (e.g.
the amount removed, the age of the cluster when it is removed, the dependence
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of gas removal on cluster mass, et cetera) is still being investigated (see e.g. Dale
et al. 2014; Pelupessy and Portegies Zwart 2012).

2.3.2 Mass Segregation

Bound versus Unbound: A Cautionary Note

In Figure 2.2, we plot the 50 per cent Lagrangian radii, i.e. the half-mass ra-
dius, using data from a simulation with an initial FoV=0.0 and a black hole
containing 2 per cent of the total mass. First, the system collapses in approxi-
mately a free-fall time to a depth which is often given as ≈ N−1/3 for N-body
simulations. In Sections 2.3.3 and 2.3.4 we discuss the time and depth of the
first collapse in more detail. Next, the system rebounds and undergoes a second
collapse which is not as deep as the first, similar to a damped oscillator.

Before plotting Figure 2.2 we divide the objects, excluding the black hole,
into bins of 10 per cent of the total mass, thus the more massive bins have fewer
particles. After the collapse the bins with themost massive objects tend towards
smaller radii (bottom of the plot), and conversely bins with the least massive
objects can be found with larger half-mass radii. For example, in both panels
the bottom line contains the most massive objects which collectively comprise
a total of 10 per cent of the system mass, and while the mass represented in
each bin is the same it will represent different numbers of objects.

e top panel, Figure 2.2a, shows the half-mass radii of the system when
including both bound and unbound particles; whereas the bottom panel, 2.2b,
shows the half-mass radius of the system including only the particles bound to
the system at each snapshot. e distinction is important particularly for the
simulations with low values of the FoV which lose a large fraction of the initial
objects. e top panel of Figure 2.2 is in good agreement with the results from
McMillan et al. (2012).

When plotting all particles, as compared to only the bound particles, the
system appears to have a larger half-mass radius due to the unbound particles
tending to be further away from the system and thus increasing the apparent
half-mass radius. is is particularly noticeable in the lower mass bins since
they are preferentially lost.

However, by taking both bound and unbound particles into account for the
analysis the expansion of the cluster appears to be much faster than when only
the bound particles are plotted.is would likely lead to a wrong estimate of the
evaporation time-scale for the system (presumably other measures of system-
wide parameters would be similarly affected). Furthermore, the cluster appears
mass segregated even in the lower mass bins, but in fact the selective expulsion
of low-mass stars is mimicking mass segregation for these stars. e bottom
panel makes clear that the (bound) cluster expands much more slowly and the
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Figure 2.2: The 50 per cent Lagrangian radius (or half-mass radius) for 10 per
cent mass bins of a system with a FoV=0.0. Each bin contains 10 per cent of the
mass and in general the upper lines represent lower mass objects while the lower
lines represent higher mass objects. The top panel has all the particles which were
originally in the system plotted regardless of whether they remain bound to the
system. The bottom panel has only the particles which are bound to the system
at that given time. Each different decade of mass is clearly identifiable and more
spread out in the top plot, whereas the data are more compressed and mixed in
the bottom plot. - 16 -
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mass segregation is only significant for the highest mass bins.
ere appears to be more mass segregation when all particles are plotted.

For example, in Figure 2.2a the 40 per cent of the mass contained in the least
massive particles (i.e. the top four lines in the plot) is not segregated but seg-
regation is noticeable between the most massive 40 per cent and the 50–60 per
cent range, and each decade of mass after that. Whereas for Figure 2.2b there
is no appreciable segregation in the 0 to 70 per cent range of the mass. e
degree of segregation between the various decades of mass is more pronounced
when plotting all particles, i.e. the differences between the half-mass radius for
the top 10 per cent of the mass (the very dark green line in the plots) and the
decade below that (the green line) are larger when plotting all particles (the top
panel). ese differences would lead to a much different conclusion about the
nature of an observed or modeled cluster. Since most objects which become
unbound from a system are likely to be long gone at the time of observation,
the plots with only bound stars demonstrate a more correct system.

Moreover, without making this distinction the apparent results from the
simulation do not reflect the dynamics occurring in the system, since unbound
particles which, in time, have almost no impact on the dynamics are still being
analyzed as if they were dynamically important. Unless noted otherwise, we
shall only use the bound objects at each snapshot for further analysis.

Effect of the Initial FoV on Mass Segregation

In Figure 2.3, we plot the half-mass radii, just as we did in Figure 2.2b. e
upper panel, Figure 2.3a, shows the half-mass radii for a system with an initial
FoV of 1.0 (virial), while the system in the lower panel, 2.3b, had an initial
FoV of 0.0 (cold). Just as before, the very dark green line represents the most
massive particles which comprise 10 per cent of the mass, and the green line
above that represents the second set of most massive particles which comprise
the next 10 per cent of the mass.

e depth of collapse (i.e. the minimum radius of the system during col-
lapse) is often given as Rmin ≈ N−1/3. We find this relationship to only hold
for the case where the initial FoV=0.0, see Figure 2.5 and Section 2.3.4 for
the better fit we find for different initial FoV. e depth of collapse becomes
deeper when the initial FoV is lower (also see Figure 2.5).

Segregation begins during the collapse for both systems and is realized at
the deepest collapse. is fast mass segregation has been examined by Allison
et al. (2009a) and Allison et al. (2010), and observed in other simulations (e.g.
Geller et al. (2013)). In the case of the cold system the bounce occurs at ≈ 1.8
N-body times, whereas for the virial case it requires ≈ 5 N-body times. e
virial case takes longer to segregate due to its longer time until collapse, as
seen in the insert of Figure 2.4. e increase in density found at the depth of
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Figure 2.3: The 50 per cent Lagrangian radius plotted for 10 per cent mass bins.
The upper plot shows the half-mass radii for a system with FoV=1.0 (virial) and
the lower plot for a system with FoV=0.0 (completely cold).
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collapse is what allows the segregation to occur so quickly, and since the deeper
the collapse the higher the density so the faster segregation can occur.

We observe, as mentioned above, the collapse is much deeper and shorter
in the cold case, Figure 2.3b, than in the virial case, Figure 2.3a, but we find
it to have a very different segregation signature. at is, the difference in how
the mass is segregated, not so much in the degree of segregation but rather in
the degree of segregation between the different mass ranges. is is an example
where the attempt to shortcut the cost of evolution using a cold system is clearly
seen.

Many of the system properties change as a function of the FoV. Cold ini-
tial conditions are sometimes used to more quickly reach a relaxed system (see
Figure 2.4 for evidence of faster relaxation for cold systems). In doing so, the
implicit assumption is that a relaxed cluster has no memory of the initial FoV
but clearly this is not the case; clusters with different initial FoV result in clus-
ters with different relaxed radii and number of bound particles, for example.
Some, but not all, of these differences might be resolved by scaling of the ini-
tial and final systems, though this would likely come at the expense of faster
relaxation.

Moreover, we cannot suggest a way to scale the segregation signature and
without scaling it the system will always remain physically distinct. is might
however provide an interesting way to diagnose the initial FoV of observed
young clusters, though more work would be required in understanding the im-
pact the initial FoV has on the segregation signature (see Section 2.4).

It should be noted that the collapse seen in the system with FoV = 1 (Fig-
ure 2.3a) is not due to non-equilibrium in the global energetics of the system,
but rather due to the spatial and velocity distributions of the particles not being
in a relaxed state (i.e. not a solution to the Fokker–Planck equation).

2.3.3 Time-scales

e inset of Figure 2.4 is a plot of the time until the deepest collapse of the
system, and the blue circles plot the time between the moment of deepest col-
lapse of the half-mass radius until the end of the bounce for each FoV. e red
diamonds mark the time from the beginning of the simulation until the end of
the bounce.

We assume that after the bounce the effect of violent relaxation is minimal
and the system enters a new regime where two-body relaxation begins to dom-
inate. e time required to reach a virially relaxed state increases as the FoV
increases, this should be expected since this time is simply the sum of the time
until collapse (inset in Figure 2.4) and the time from collapse until rebound
(the blue circles in Figure 2.4) both of which increase with FoV.

e red diamonds in Figure 2.4, provide evidence that warm initial condi-
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Figure 2.4: The green squares, of the inset plot, mark the time from the beginning
of the simulation until collapse. The blue circles indicate the time from the collapse
until the end of the bounce. The red diamonds mark the length of time from the
beginning of the simulation until the end of the bounce for each FoV; in other
words, the minimum time required to simulate in order to reach a mass segregated
and relaxed system.

tions in fact do require simulating for more crossing times than cold ones. Note
that it takes more than five times longer for the initially virialized case than for
the initially cold case to reach the end of the bounce (>10 N-body times com-
pared to 2 N-body times). e end of the bounce for the virial case (FoV = 1)
is not seen before the 10 N-body times for which we ran these simulations.

e inset in Figure 2.4 shows the time until the system reaches the deepest
point of collapse, or Rmin. We know that the free-fall time-scale, which is the
time for collapse of a homologous contraction, is

τFF =

√
3π

32Gρ
. (2.1)

Keeping with our use of N-body units, G = M = 1, thus ρ = 3
4πR3 and our

equation reduces to

τFF =
π

2

√
R3

2
. (2.2)

At the beginning of the simulations, we measure the most distant particle to be
≈ 1.2 N-body lengths from the center of mass of the system, using that value
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for the radius we find a constant value for the time of collapse in our simulations
to be

τcollapse ≈ 1.46. (2.3)
is value is close to what is plotted in the inset of Figure 2.4 for a FoV between
0.0 and 0.36. However, we show it is not valid to assume a free-fall time-scale
as the relevant time-scale for collapse in a system with an initial FoV >0.36
(Q > 0.18).

2.3.4 Minimum Cluster Radius

In Figure 2.5, we show the half-mass radius at the point of deepest collapse,
i.e. the minimum radius during the collapse, versus the FoV. In this figure, we
demonstrate the dependence of the depth of the collapse as a function of FoV.
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Figure 2.5: The half-mass radius at the point of deepest collapse versus the FoV.
The red dashed line is the fit we propose with a Q dependency, the green solid
line is the theoretically predicted value, and the black dotted line is the softening
length.

e depth of the collapse, Rmin of collapse, is often given as ≈ N−1/3

(Aarseth et al. 1988), where N is the number of particles. We recover a value
very close to this for the case of a cold collapse finding a difference of only 0.01
N-body lengths. However, as we show in Figure 2.5, and can also be seen in
Figure 2.3, the depth of collapse is also dependent on the FoV. In our experi-
ments, we holdN constant and change FoV and we find that as the system be-
comes more virial the collapse becomes less deep, that is Rmin becomes larger.
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We find that
Rmin ≈ 1

2
× FoV +N (−1/3) (2.4)

provides a good fit to our data, and is a substantially better approximation for
Rmin in non-cold systems.

Recall from our definition of FoV that FoV
2 is equal to Q. So finally we

propose that the minimum radius of collapse is dependent not only on N but
also on the virial temperature in the following way:

Rmin ≈ Q+N (−1/3), (2.5)

where Q ≡ |T/V | and N is the number of particles being simulated.

2.3.5 Observables

In Figure 2.6 we provide plots of three observable parameters: the core radius,
the slope of the density distribution, and the mass segregation ratio. We cal-
culate the core radius by following Casertano and Hut (1985) with a density
weighting factor of 2. To measure the slope of the density distribution, we per-
form a linear least-squares fit of the density and radial distance from the center
of the cluster in log–log space. In measuring both the core radius and den-
sity distribution we determine the local density using hop (Eisenstein and Hut
1998) with a 7 neighbor particle radius. e mass segregation ratio is calculated
using the minimum spanning tree method described in Allison et al. (2009b).
We use the 20 most massive particles to construct the “massive” tree and 50
different sets of random particles to construct the “random” trees. e left col-
umn of Figure 2.6 shows data from simulations with a Salpeter mass function,
with particles initially distributed in a homogeneous sphere, and no black hole,
while the right column of Figure 2.6 has a similar set of initial conditions with
the addition of a black hole containing 2 per cent of the cluster mass.

We note several regimes in the plots: the first is at early times regardless
of the FoV (the far left of the plots) there is a relatively large core radius, flat
density distribution, and a small degree of mass segregation. is of course is
due to the initial conditions.

e second regime we note is the lower-right quadrant (small FoV and late
times) where the systems have had time to relax. Here we find the smallest core
radii, the most extreme density distribution, and the highest degree of mass
segregation. By mapping these quantities from an observed young cluster to
Figure 2.6 along with other derived properties of a cluster (e.g. minimum age),
constraints can be placed on the initial conditions of the system. Additionally,
the plots can be used to determine what range of FoV would be ideal to use
in the initial conditions for a simulation which aims to reproduce a physical
system or investigating a phenomenon in clusters with a particular observable
parameter.
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Figure 2.6: Observable quantities plotted against initial FoV and time. Left (2.6a,2.6c, and
2.6e: system with no a black hole. Right: system with black hole containing 2 per cent of
the cluster mass. Top: colors denote the core radius in N-body units. Middle: colors denote
density distribution slope. Bottom: colors denote mass segregation ratio.
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2.4 Application to an observed cluster: R136

R136 is in the center of NGC 2070 (30 Doradus), which is in the Tarantula
Nebula, a young star cluster in the LargeMagellanic Cloud (LMC).is region
is the subject of many observations including two surveys: e VLT-FLAMES
Tarantula Survey (Evans et al. 2011) and theHubble Tarantula Treasury Project
(Sabbi et al. 2013). In the following, we simulate R136 as an isolated cluster
in order to constrain the initial FoV and other properties. For this purpose, we
performed an additional set of simulations with initial conditions like the sec-
ond row in Table 2.1: 15,210 bound particles, no black hole, a Salpeter mass
function, with particles distributed in a homogeneous sphere. However, we
run these simulations for 20 N-body times, producing 1000 snapshots for each
simulation.

2.4.1 Observed Parameters

Hunter et al. (1995) found a core radius for R136 of 0.02 pc, a value that was re-
fined to 0.025±0.004 pc by Andersen et al. (2009). e methods used to deter-
mine the core radius in Hunter et al. (1995) are disputed for example by Brandl
et al. (1996), who found core radii as a function of stellar mass cutoff ranging
from≈ 0.038 to 0.3 pc for high- to low-mass cutoffs, respectively. Other values
for the core radius that have been proposed include 0.063 pc (Campbell et al.
1992), 0.1 and 0.15 pc (using different filters, de Marchi et al. 1993), 0.2 pc
(Moffat et al. 1985), 0.24 pc (Malumuth and Heap 1994), and 0.33 pc by both
Meylan (1993) and Mackey and Gilmore (2003), though Mackey and Gilmore
state that due to crowding in their images their value represents an upper limit.

Selman et al. (1999) provide us with a fit to the density profile with a single
power law with an exponent of −2.85. ere seems to be a much stronger
consensus about the value of this observable in the literature and so we will use
-2.85 with a spread similar to the range found in other works (section 3.3 in
Selman et al. (1999) provides a good overview).

Sabbi et al. (2012) found that R136 likely started forming stars ≈ 2 Myr
ago and was still active up to ≈ 1 Myr ago. ere are other, older age estimates
for the cluster (e.g. Brandl et al. (1996) favor an age of ≈ 3.5 Myr), but since
Sabbi et al. (2012) differentiate between R136 and a separate clump to the
northeast of R136, which is older and seems to be included in previous age
estimates, we choose to use their value. e young age of this cluster is ideal
for comparing to our simulations since two-body relaxation has not yet had a
strong effect on the system.

Finally, Hénault-Brunet et al. (2012) offer an in-depth analysis of the cur-
rent virial state of R136. After accounting for the rotation velocity and angle,
variable stars, and binaries (see Gieles et al. (2010) for more about the impact
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of binaries on the virial state of young clusters) Hénault-Brunet et al. (2012)
find that R136 is in virial equilibrium.

2.4.2 From N-body to Physical Units

So far we have shown our results in N-body units (Heggie and Mathieu 1986)
however if we are to compare the results to R136 we will need to convert to
physical units. When the initial conditions (i.e. the physical scales) are known,
this conversion is straightforward. For example, by taking the ratio of the ob-
served virial radius to the measured simulated virial radius, and the ratio of the
observed mass of the cluster to the measured mass of the simulated cluster, and
setting the gravitational constant to unity a complete converter from N-body to
physical units is formed. is converter can then be applied to each snapshot.

However, because we are attempting to constrain the initial conditions we
cannot make an assumption about the initial physical scales (i.e. the mass and
radius) of the system. Moreover, as we are comparing our results to a known
physical system for which we are not certain of the age in crossing times, i.e. N-
body time units, we cannot assume that any particular snapshot is the one which
represents the observed state. us, we are forced to evaluate each snapshot as if
it were the one which corresponds to the observed state and thus each snapshot
must have its own conversion to physical units.

Our conversion from N-body units to physical units is accomplished in
the following way: for every snapshot, we measure the half-mass radius of the
bound particles, then, to simulate an observation which is seen in projection, we
select all (bound and unbound) particles within a cylinder with a radius equal to
the measured half-mass radius. Next, we measure the mass of all of the particles
within that cylinder. e final measurement we make is of the virial radius of
the system. is measurement must be done carefully since often these systems
are out of virial equilibrium, so we use a definition based on the potential energy

Rvir = −GM2/(2V ),

where V is the potential energy.
Still all of these measurements are in N-body units, to convert we use a

virial radius of 2.89 pc (Portegies Zwart et al. 2010) and a total cluster mass of
105M⊙ (Andersen et al. 2009). We simply take the ratio of the observed virial
radius to the simulated virial radius, and the total observed cluster mass to twice
the simulated measure of the half-mass. ese values along with setting G = 1
make a complete unit conversion possible. is procedure is repeated for every
snapshot, in this case 1000 snapshots for each value of the initial FoV.

Since each snapshot has a different conversion factor there is counterintu-
itive behavior in some of the measurements. As said, in many applications a
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simple (constant) conversion from N-body time units to physical age is pos-
sible, but since our snapshots are produced at fixed intervals of N-body time,
and each one has a different conversion factor, the apparent age does not in-
crease linearly, and sometimes may even decrease. For example, if the radius of
the cluster expands fast enough the time conversion factor may decrease more
quickly than the time in N-body units has increased.
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Figure 2.7: The physical age at each snapshot using our converter from N-body
units. Each line corresponds to a different initial FoV with 0.16 plot in both panels.

In Figure 2.7, we plot the calculated instantaneous age of each snapshot
versus theN-body time using the conversion described above.e bottompanel
of Figure 2.7 are plots of the age for initial FoV of 0.0 to 0.16 while in the top
panel the plots for 0.16 to 1.21.

e prominent spike inmany of the simulations around 1.5-2N-body times
is due to the collapse of the system. During the collapse the simulated half-
mass radius is decreasing very rapidly while the simulated mass interior to the
projected half-mass radius is remaining constant so the physical time evolved
per snapshot becomes very large. Another way to word it is that as the system
collapses the number of crossing times per snapshot is increasing.

Again we would like to point out, as we did in Section 2.3.2, the impor-
tance of discerning when it is appropriate to use only the bound particles or all

- 26 -



Subvirial Systems

(bound and unbound) particles. To demonstrate this point, we performed the
conversion as described above but using the bound and unbound particles to
make the measure of the radius (instead of using the particles in the selection
cylinder as we did for this analysis). When making this measurement on all the
simulated particles we obtained different results, but most strikingly we found
that the instantaneous age of each snapshot began to monotonically decline af-
ter a few N-body times. is is due to the virial radius growing too large too
quickly, because of the escaping unbound particles. Clearly such behavior is
unphysical, since it would imply that even with an infinitely long simulation
the physical age would not increase beyond a certain point, but without such a
plot it might not be obvious that something was amiss.

2.4.3 Initial Virial Temperature of R136

We define the central region of R136 for our purposes as the volume interior to
its virial radius, or ≈ 2.9 pc (Figure 4 of Hénault-Brunet et al. (2012) presents
a nice image of the region with markings for several radii).

We ran simulations (without a black hole, with a Salpeter mass function,
and particles initially distributed in a homogeneous sphere) for 20 N-body
times. We show the relevant data in Figure 2.8. e observables shown in Fig-
ure 2.8 are not for all bound particles but rather for all particles within a cylinder
of radius 2.9 pc from the center of the system; this is done to mimic a projection
on to the sky as would be found in the observations. To reduce noise, we plot
the average of every two snapshots thereby reducing the number of data points
for each initial FoV from 1000 to 500.

In the top-left panel of the figure, we plot the core radius from our simula-
tions with the color coding, in parsecs, representing the ranges outlined above
and values not falling between these ranges are plotted in gray. In the top-right
panel, we plot the slope of the density distribution. We expect anything within
the range of −2.6 to −3.1 to be consistent with the observed value of −2.85
(Harfst et al. 2010). e middle left panel is a plot of the instantaneous dynam-
ical age of the system with values outside of the measured 1 to 2 Myr plotted in
gray. While we start each simulation with a set FoV it quickly evolves, we have
plotted, in the middle right panel, the FoV as it evolves in time. Since R136
is currently expected to be in virial equilibrium we plot in color the snapshots
which have a FoV of 1 ± 0.1. And finally, in the lowest panel, we show the
core radius for only the systems which have a valid measurement for all of the
above observables (i.e. core radius, slope of the density distribution, dynamical
age, and virial temperature).

We find that within the observational constraints listed above our simu-
lations limit the initial FoV to a likely value between 0.16 and 0.25, with a
most likely value of 0.25. ere is also a valid solution at 0.36 but it ranges over
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Figure 2.8: Several measures of simulated systems with only the values matching
the observational limits of R136 plotted in color. (a) The core radii within obser-
vational limits, (b) the slope of the density distribution within observational limits,
(c) the age for each snapshot within observational limits, (d) the FoV at each
snapshot, and (e) the core radii for snapshots which satisfy all the observational
limits. The regions in gray do not produce an accepted value. See the text for more
information on the limits. These systems all began as a homogeneous sphere, with
a Salpeter mass function, and without a black hole.

- 28 -



Subvirial Systems

a much shorter time and it is not continuous, for this reason we do not find
this solution to be as probable. e continuous solution at 0.16 lasts for nearly
0.2 Myr whereas the solution at 0.25 lasts for ≈ 1 Myr so we consider the 0.25
case to be the most likely.

Using the initial FoV of 0.25, we note that in our simulations the core
radius is most likely found around 0.2 pc, ranging from about 0.1 to 0.33. We
find very few solutions that allow for the small core radius of the order found
in Hunter et al. (1995) or Andersen et al. (2009). e range of the simulated
FoV is close to 1.0, with the deviations from unity unlikely to be detectable in
observations.

We note that these results are based on isolated systems with some simplifi-
cations, such as instantaneous star formation and ignoring primordial binaries.
And while R136 is likely to have formed with more complicated initial condi-
tions and is not in isolation, these results provide only a first-order estimate for
the initial FoV of R136. Moreover, this method may be useful when applied
to other young clusters which could aid in determining their initial virial tem-
peratures. We hope this example case has also demonstrated the significance
the initial virial temperature has on the evolution of a system.

2.4.4 Other Young Clusters

Using the same analysis techniques we used for R136 we analyzed 15 other
extragalactic young clusters. A list of young clusters within and outside the
Local Group can be found in Tables 3 and 4, respectively, of Portegies Zwart
et al. (2010). We required each cluster to have a reported core radius as well as
an “Age/tdyn” (the last column in the tables) of less than 20. Age/tdyn is the
inferred age of the cluster divided by dynamical time-scale, or in other words
the number of times the typical star has crossed the system (see Gieles and
Portegies Zwart (2011) on the usefulness of this measurement). e clusters
which we analyzed are: 3cl-a and a1 in M51; B015D, B040, B257D, B448,
and Vdb0 in M31; NGC 1711, NGC 1847, NGC 2004, NGC 2100, NGC
2157, NGC 2164, and NGC 2214 in the LMC; and NGC 330 in the Small
Magellanic Cloud.

As these systems are not as well studied as R136 we only used the age and
core radius as constraining parameters, but otherwise the analysis remained the
same as was performed above for R136. In 11 of the 15 cases the initial FoV
can be fitted well by a value of 0.36 or 0.49 (Q ≈ 0.18 or 0.25). In one case,
3cl-a, the initial FoV is large with a value between 0.64 and 0.81 (Q ≈ 0.32 or
0.40), this was the only case with a likely initial FoV greater than 0.49. In the
remaining three cases — B015D ,B040, and B448 — the initial FoV was lower
than the typical value. B015D and B448 were best fitted by an initial FoV by
0.04 and 0.09, whereas B040 was best fitted by 0.16 or 0.25.
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We find the most typical value (i.e. the mode) for the best-fitting initial
FoV in all of the clusters we tested (including R136) to be 0.36 and 0.49 (Q ≈
0.18 and 0.25), collectively these two values fit nearly 70 per cent of the clusters
tested. A probability-weighted average of the distribution of the initial FoV for
these clusters yields a value of 0.30 (Q = 0.15).

ere may be observational evidence for clusters forming with a rather low
initial FoV as we have found here; for example, André (2002) studied ρ Ophi-
uchi and found evidence of collapse. Additionally, Walsh et al. (2004) found
subsonic motion of star-forming cores in NGC 1333 implying subvirial veloc-
ities, and Peretto et al. (2006) found signs of global collapse in two massive
cluster-forming clumps, namely NGC 2264-C and NGC 2264-D. Moreover,
Proszkow et al. (2009) found that subvirial initial conditions were required in
their model in order to explain the kinematic observations of the Orion Nebula
Cluster.

2.5 Conclusion

While we suspect that the use of “cold” initial conditions is done too often for
computational convenience, and with little consideration to physical reasoning,
we do not, and cannot, claim that using any particular subvirial temperature is
incorrect or less physically consistent since the distribution of the initial virial
temperature is unknown. We simply aim to demonstrate that the choice of
virial temperature is important to consider when formulating initial conditions
as this choice has a profound impact on evolution of the resulting cluster.

We also stress the importance of performing analysis only on relevant par-
ticles in a simulation, in our case usually the bound particles. We show an ex-
ample of the error that can result by analyzing all particles and not only the
bound particles in Figure 2.2. Furthermore, we found that the improper use
of unbound particles in the conversion from N-body to physical units lead to
unphysical results.

We examined the effect the initial FoV has on the number of particles lost
in cases with equal mass particles as well as with a mass function in Figure 2.1.
In the same figure, we find that the addition of a black hole to a cluster has
the effect of reducing the number of bound particles after 10 N-body times,
as compared to the same system without a black hole, since the black hole
acts like a strong scatter. Additionally, we note an uptick in the number of
bound particles for cold systems. We speculate that this effect is due to the
particles initially having no radial motion and so passing through the core on
a nearly free-fall trajectory causing them to spend the least amount of time
in the very high density core during the collapse. We then discussed how the
mass segregation is dependent on the FoV, not only in degree but also in what
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we called the mass segregation signature (essentially the difference in degree of
mass segregation between different mass ranges).

Next we considered the strong influence the choice of initial FoV has on
the time-scales (Figure 2.4) and the radius of a system (Figure 2.5). In doing
so, we find that the minimum radius, Rmin, of a system in violent collapse has
a strong dependency on the virial temperature, Q, as well as the number of
particles, N . We find that Rmin ≈ Q + N (−1/3). Figure 2.4 also provides an
estimate to the extra computational expense to reach a mass segregated cluster
in a steady state for different initial FoV.

After plotting observable quantities, i.e. the core radius, the slope of the
density function, and the mass segregation ratio as a function of time and ini-
tial FoV in Figure 2.6 we discuss the impact of the inclusion of a black hole
as the system evolves. We finally compare our simulated system (particles ini-
tially distributed in a homogeneous sphere, with a Salpeter mass function, and
without a black hole) to the young cluster R136. In doing so, we find that given
R136’s age estimate, the observed current FoV, as well as the observed slope of
the density distribution, and the many observational constraints on the core ra-
dius, R136 would most likely have had an initial FoV of 0.25 (Q ≈ 0.13). We
repeated the same analysis on 15 other young clusters for which we found 0.36
and 0.49 (Q = 0.18 and ≈ 0.25, respectively) to be the most likely initial FoV
in nearly 70 per cent of all 16 young clusters (including R136) and a probability-
weighted mean of the distribution of initial FoV to be 0.30 (Q = 0.15). While
these results are robust, we do note that these values are based on an idealized
system.

Finally, we hope that this work has convinced the reader of the importance
of the initial virial temperature used in simulations. Whether used as the initial
velocities of particles or of merging galaxies, the effect of the virial temperature
can be profound and as such should be carefully chosen.
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Collapsing Clusters

We introduce a new method to measure and quantify mass segregation which we then
use to explore the mechanism driving rapid mass segregation. e method is based
on measuring how statistically likely n number of high mass particles are expected
to be closer to one another than a random set of n particles drawn from the same
system. is method, which we call the nearest neighbor method, is shown to provide
similar results for simple star systems, a better measure of mass segregation in complex
systems, while providing a significant speedup over the previous, minimum spanning
tree, method.

We apply our new method to measure the mass segregation in simulations of cold,
collapsing star clusters. Two, dynamical, hypotheses have been put forward to explain
the mechanism causing the rapid mass segregation in collapsing clusters; we have de-
signed and implemented an experiment to distinguish between. We find that the rapid
mass segregation of star clusters is primarily driven by the very high density of the clus-
ter toward the end of the collapse and is not the result of multiple sub-clusters forming
and mass segregating during the collapse.
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3.1 Introduction

3.1 Introduction

Mass segregation describes the phenomenon wherein a given system massive
astronomical objects are statistically more likely to be found near other massive
objects than objects of arbitrary mass. is will be the working definition of
mass segregation throughout this paper.

Several mechanisms, e.g. dynamical friction (Chandrasekhar 1943), can
account for mass segregation in general, understanding the mass segregation
observed specifically in young star clusters, i.e. in the Trapezium of Orion,
places a time constraint on the mechanism. Because these clusters are young
the mass segregation must happen much faster than expected or the system
must have formed in such a way that the most massive stars were born close
together, so called premodial mass segregation. Determining the mechanism
for such rapid mass segregation could have significant implications for where
in a cluster stars form, which additionally could provide an indication on the
formation mechanism of massive stars.

Bonnell and Davies (1998) suggested that a dynamical mechanism could
not satisfy the time constraint of rapid mass segregation. However, Allison
et al. (2009a) found that for clusters which were initially subvirial and initially
had substructure dynamical mass segregation can satisfy the time constraint
from young clusters. Olczak et al. (2011) and Caputo et al. (2014) showed
that even subvirial cluster without initial substructure (distributed in a homo-
geneous sphere in the latter case) could produce mass segregation on a very
short time scale as well, suggesting that the initial virial temperature may be
the more relevant metric for rapid mass segregation driven by dynamics.

Allison et al. (2009a) suggested that subvirial collapsing clusters mass seg-
regate more quickly than might be expected due to the dense core formed as a
result of the collapse (see Caputo et al. 2014, for a detailed study of the effect of
the virial temperature on collapsing clusters). McMillan et al. (2012) claimed
that this rapid mass segregation happens not around the time of the “high den-
sity bounce”, but rather during the entire collapse. Using the simulation data
from Caputo et al. (2014) with nearly 500 simulations of collapsing systems we
investigate the phenomenon of rapid mass segregation.

3.2 Method

In order to examine the effect of mass segregation on collapsing star cluster we
must consider how to measure the degree of mass segregation. Allison et al.
(2009b) presented a method for measuring mass segregation by using a mini-
mum spanning tree. e minimum spanning tree (MST) is a method to con-
nect a number of points, or vertices, in a space by the shortest path without any
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loops.eMSTdetermines the length of this path. (We used Kruskal’s method
(Kruskal 1956) when reimplementing their method.) Earlier methods tended
to be dependent on models of the density profile or mass function and on the
number of mass bins among other parameters (see Gouliermis et al. 2004). Ad-
ditionally, these methods assumed the mass segregation would be found in and
around the cluster’s center, the definition of which was not always clear.

3.2.1 Minimum Spanning Tree Method

To determine the mass segregation the n number of most massive particles
are selected and the MST length of those particles is found, ℓmassive. Next, n
number of particles are selected at random from the cluster and theMST length
for these particles is found, ℓrandom. is step of finding the MST length for
random sets is repeated some number of times, Allison et al. (2009b) suggest
that 50 times is adequate but that hundreds produce smoother trends.ey then
find the average of the MST length for all of the random sets and determine
the ratio of these two lengths:

ΛMST =
⟨ℓrandom⟩
ℓmassive

± σrandom
ℓmassive

. (3.1)

Where σrandom is the standard deviation of the measurements of the randomly
selected sets. If ΛMST is around 1 it suggests that the separation between the
n most massive particles is similar to the separation between the particles in
the system in general, i.e. there is no mass segregation. If ΛMST is significantly
> 1 it suggest that separation between the n most massive particles is much
smaller than the separation between the particles in the system in general, i.e.
the system is mass segregated. Finally, if ΛMST is significantly < 1 it suggest
that separation between the n most massive particles is much larger than the
separation between the particles in the system in general, i.e. inverse mass seg-
regation.

3.2.2 Nearest Neighbor Method

Wehave developed a newmethod which we have dubbed theNearest Neighbor
(NN) method. e method is similar to the MST method in that it calculates
a length for the n most massive particles and then the length is measured again
for some number of randomly selected groups each with n particles as well.
e difference is that in place of calculating the minimum spanning tree we
calculate the average distance to the nearest neighbor for each set. Other than
the distance measurement the remainder of the algorithm is the same, ΛNN is
calculated just as it was for ΛMST :

ΛNN =
⟨ℓrandom⟩
ℓmassive

± σrandom
ℓmassive

, (3.2)
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and the interpretation of the results is the same as well.
As we will show, the advantages of the NN method over the MST method

include better detection of mass segregation in clusters with complex structure
as well as a dramatic reduction in computation time.

3.3 Comparing Results

3.3.1 Measurements of the Mass Segregation

Simple Mass Distribution

In order to compare the MST method to the NN method we have constructed
an artificial data set of a star cluster; the cluster is constructed such that there
are 16K (i.e. 214) particles arranged in a plummer sphere with a Salpeter mass
function (Salpeter 1955), with masses from 1 to 50 M⊙, which are assigned
randomly to the particles in the cluster. e inner 160 particles (≈ 1 per cent
of the cluster) are then reassigned masses based on a Salpeter mass function
with masses from 50 to 100 M⊙. is produces a cluster in which the 160
most massive particles are mass segregated, in a core, from the remainder of
the cluster, however there should be no significant mass segregation outside of
the core.

In Figure 3.1 we plot the mass segregation ratio for the artificial cluster
described above out to the 200 most massive particles. e red line is produced
by the NN method (this paper), whereas the blue line is produced by the MST
method, in both cases 50 random sets were used in order to calculate ⟨ℓrandom⟩.
e two methods give nearly identical results. e region shaded in red is the
±1σ level of error from the NN method, we chose not to show the error from
the MST method because the two of them were so similar that showing both
resulted in confusion in the plot. e horizontal, solid green line indicated a
mass segregation ratio of 1, i.e. no mass segregation, and the vertical, dotted
green line is placed at 160 particles, the number of mass segregated particles
(by construction).

Both methods indicate the presence of mass segregation of the 160 most
massive particles.

Using the NN method we plot, in Figure 3.2, the mass segregation ratio for
the artificial data set described above; each line represents the data from using
a different number of random sets, from 1 to 100, to calculate ⟨ℓrandom⟩. We
plot the data for sets from 1 to 100, though we only show every other value in
the legend so as to make it (nearly) readable. Using the NN method we are able
to do this out to 512 particles due to its increased speed, however after several
months the MST version of the same plot is not finished running.

Figure 3.2 demonstrates how using more random sets reduces the noise in
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Figure 3.1: Results from the NN (red line) and MST (blue line) methods on an artificial
data set in which the 160 most massive particles are mass segregated in the center of
the system, see text for more details. The red shaded area represents the ±1 σ error level
of the NN method. The horizontal, solid green line indicates a mass segregation ratio
of 1, i.e. no mass segregation; the vertical, dotted green line indicates 160 particles, the
number of particles which are mass segregated in the data set.

the measurement, of course this comes at the expense of more computing time
needed. Also note how the values for the mass segregation drop off after the
160th particle, after which there is no mass segregation. e value decays to
around 2 for 512. is decay, instead of a fast drop, is the result of the first 160
most massive particles having an effect on the mass segregation ratio of the
remainder of the particles; for example, when calculating the mass segregation
ratio for the first 161st particles the result is dominated by the first 160, mass
segregated, particles, and at the 320th particle the first half of the particles are
mass segregated so the mass segregation ratio will show values greater than
1 even though there is no mass segregation at that value. For this reason it
is important that these methods be used with a regular interval of particles,
calculating the mass segregation ratio out to only one particle value, i.e. only
calculating the mass segregation ratio for the first X-number of particles while
not doing so for the particles before it may result in results which cannot be
interperted correctly.
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Figure 3.2: The mass segregation ratio, using the NN method, out to 512 particles for
the same data as in Figure 3.1. Calculated with different number of random sets, up to
100, as indicated in the legend. For the sake of readability only the even number of sets
are labeled in the legend, however all number of sets, from 1 to 100 are plotted.

What is the benefit then of this new method if the results are essentially
the same?

Complex Mass Distribution

We produced another artificial system to test the difference between the NN
and MST methods. For this test case we created a system just as we did above
with all of the most massive particles located in the center, but this time with
the nine separate cluster each with 1/9

th the number of particles (both massive
and non-massive). We then place all nine identical, mass segregated systems
into a single volume. Of the nine systems one is placed in the center and the
remaining eight are placed equally around a sphere such that the radius of each
system does not overlap with the radius of any other systems.

Each subsystem has 1,820 particles with 18massive particles in their center,
resulting in a total of 16,380 particles and 162 massive particles. Figure 3.3
is a plot of the mass segregation measure of this system out to the 200 most
massive particles using 50 random sets to calculate ℓrandom. e solid red line
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Figure 3.3: Results from the NN (red line) and MST (blue line) methods on an artificial
data set in which the 162 most massive particles are mass segregated in the center of
nine sub-clusters arranged in a non-overlapping way, see text for more details. The red
and blue shaded area represents the ±1 σ error level of the NN and MST methods
respectively. The horizontal, solid green line indicates a mass segregation ratio of 1, i.e.
no mass segregation; the vertical, dotted green line indicates 162 particles, the number
of particles which are mass segregated in the data set.

is the measurement from the NN method, with a ±1σ error shown by the red
shaded area; the blue line is the measurement from the MST method, a ±1σ
error is shown by the blue shaded area.e solid, horizontal green line is plotted
at 1.0, i.e. no measured mass segregation, and the vertical dashed line marks
the 162 most massive particle, i.e. the end of the designed mass segregation.

e system is mass segregated, but in small sub-clusters. For the first nine
most massive particles (the single most massive particle from each of the sub-
clusters) both the NN and MST method show inverted mass segregation, the
most massive particles are more separated from each other than randomly se-
lected particles are seperated. is is because the length of the NN and length
of the MST for the nine most massive particles is measuring the separation be-
tween the sub-clusters, but when measuring the respective length for the ran-
dom sets of particles if any two particles are selected from the same sub-clump
then the length for the random set will be significantly shorter than the length
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for the most massive particles. However, after the ninth most massive particles
the two methods diverge in their respective measurement of the mass segre-
gation. e MST method remains, and always will remain, dominated by the
separation between the sub-clusters, whereas with the NN method the mea-
sured length for the most massive particles is a measure of the distance between
those particles and not the sub-clusters.

e MST method is unable to identify mass segregated sub-clusters that
are spread over the total system volume, but the NN method can make good
measurements of simple systems while also adjusting to more complex systems.
While not fool-proof, there are cases that both the NN and MST methods
would be poor at accurately measuring mass segregation, we have shown that
the NN method is more graceful at adapting to different mass distributions.

More importantly, we have shown that the NN method is able to measure
mass segregation of sub-clusters, a required step if we are to distinguish between
the two proposed mechanisms of dynamical rapid mass segregation.

But wait there is more, the NN method is also much faster.

3.3.2 Speed

e MST method was a considerable improvement over previous methods
which either did not quantify the degree of mass segregation and/or weremodel
dependent. However, to quantify mass segregation using this method when
provided with an unknown system one must preform the method on a regular
interval for every number of most massive particles up to the final degree of
mass segregation one desires to test. at is, if one wished to know if a given
a system of 104 particles was 10 per cent mass segregated the method would
have to preformed 1000 times; constructing the MST for the 2 most massive
particles, then 3, 4, . . . , 1000 particles, each time constructing 50 other MSTs
for the random sets.

e MST method has a runtime complexity of O(ElogE) where E is the
number of edges, i.e. the number of connections between points. Since we as-
sume all points can connect to all other points we have a complete graph which
has n(n − 1)/2 edges. So to highest order the complexity is O(n2log(n2)).
However, before we calculate the MST length we must also calculate the length
of all the edges which has a complexity of O(n2); so in total our expected run-
time complexity is O(n2 + n2log(n2)).

e Nearest Neighbor Method requires the calculation of all of the dis-
tances between all particles, the exact same calculation as determining the length
of all the edges, which has a runtime complexity of O(n2)1. is means the

1is is for the naive implementation, using a more sophisticated approach, such as a k-d
tree has a complexity of O(log(n)[n+ 1]).
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Nearest Neighbor method should be roughly 2log(n)+1 times faster than the
MST method for each iteration.

In the case we want to know the the mass segregation out to 10 per cent
of a cluster with 104 particles the NN method would be faster by a factor of
1000∑
2

2log(n)+1, which is a whopping 6,100 times faster than theMSTmethod.

In Figure 3.4 we plot the number of particles, n, used for the NN and MST
method versus the time it takes for each iteration, the solid lines, and the cumu-
lative time, the dashed lines. e red lines are for the NN method and the blue
lines for the MST method. We show that for n > 11 particles the total cumu-
lative time for the NN method is shorter than the time needed for a single step
with the MST method. Moreover, the cumulative time using the MST method
for n = 200 particles is a factor 1000 times longer than the NN method. e
savings in runtime we obtain from the NN method over the MST method is
so large it allows us to explore portions of the parameter space that were not
avalible before; e.g. in trying to run the simulations to produce Figure 3.2 the
NN method took ≈ 8 hours (iterating from 2 to 512 particles and from 1 to
100 random sets), at the time of writing the MST method had been running
for 3 months and at that point was only to particle 344.

However, Figure 3.2 is a very artificial examination of the method rather
than a useful science tool. Where this speedup becomes needed is to do science
when the number of particles in a system is very large. Allison et al. (2009b)
tested their method on systems on 1000-body clusters, measuring themass seg-
regation ratio of up to 10 per cent of the cluster size (i.e. up to 100 particles).
e MST method works well enough at those numbers, but simulations are
becoming ever larger (even simulations with N = 1010 are becoming possible
see e.g. Bédorf et al. (2014), though Portegies Zwart and Boekholt (2014) pro-
vides an interesting counter-example). Testing mass segregation for up to 10
per cent of systems with N = 104 become very tedious with the MST method
and simply unobtainable for N = 105.

We find that for the NN method using 50 random sets the cumulative time,
in seconds, grows as power law with the form ≈ 0.03n1.23 (see the red dotted
line in Figure 3.4); whereas, the cumulative time for the MST method, again
using 50 random sets, grows as ≈ 0.001n3.1 (see the blue dotted line in Fig-
ure 3.4). Assuming these holds for very large values it implies that calculating
the mass segregation for 10 per cent of a 106-body system, that is calculating
the mass segregation out to 105 particles, would take about 12 hours with our
NN method, and much longer than a career time for the MST method. e
NN method makes exploring mass segregation much more practical for nearly
any size system, and obtainable even for large systems.

e NN method will always have a speedup over the MST method which is
not something that can be compensated for by improving the MST algrithum

- 41 -



3.4 Results and Discussion

101 102

Number of Particles
10-2

10-1

100

101

102

103

104

105

Ti
m

e 
[s

ec
]

NN method per itteration
NN method cumulative
fit to NN
MST method per itteration
MST method cumulative
fit to MST

Figure 3.4: The solid lines show the per iteration time in seconds, the dashed lines show
the cumulative time, and the dotted lines show the fit to the cumulative time. The red
lines are for the NN method (this paper) and the blue lines are for the MST method. The
fit to the NN method (red, dotted line) is of the form 0.03 n1.23 and is in good agreement
with the cumulative time for the NN method. The fit to the MST method (blue, dotted
line) is of the form 0.001 n3.1 and is in good agreement with the cumulative time for the
MST method after n ≈ 30. We used 50 sets of data to calculate ⟨ℓrandom⟩.

or moving the two methods to other archatectures, e.g. graphics processing
units, because the NN method is a required part of the MST method. While
preforming the MST method one must find all of the

3.4 Results and Discussion

3.4.1 Simulation Methods

We have simulated systems with 15,210 particles initially spatially distributed
in a homogeneous sphere. e masses of the particles are drawn from a Salpeter
mass function inN-body units with a physical equivalent of 0.3 to 100M⊙.e
systems examined below, unless otherwise noted, are produced cold, i.e. with
a virial fraction of 0.0. ey are then simulated for 10 N-body times in the
AMUSE environment (Pelupessy et al. 2013) using the fourth-order Hermite
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code ph4 (McMillan in prep.). For more details about the simulation setup see
Section 2 in Caputo et al. (2014).

In analyzing the mass segregation of the simulations we primarily make use
of the NN method outlined above. To calculate the density of the cluster core
we use the code hop (Eisenstein and Hut 1998) with 50 nearest neighbors.

3.4.2 Mass Segregation

McMillan et al. (2012) suggested that rapid mass segregation happens as a
result of a collapsing system forming sub-cluster which due to their small size
mass segregate on their, fast, dynamical timescale; whereas, Allison et al. (2009a)
had proposed rapid mass segregations is due to the short-lived, but very dense
state that happens as the cluster’s collapse reaches a maximum. In order to dis-
tinguish between these two scenarios, or uncover a different mechanism, we
have designed an experiment to disentangle these cases.

e experiment works in the following way: first, we run a simulation of
a collapsing cluster and plot the mass segregation ratio as a function of time.
Second, we take a snapshots from that simulation at 0.9, 1.25, 1.5, 1.75, and
2.1 N-body time units (or Henon time units Heggie and Mathieu 1986) and
randomly swap the masses (it is important to note that we do not produce
new or different masses, we simply rearrange the masses). Finally, we continue
running the simulations from that point with the swapped masses, and when
each one finishes we again measure the mass segregation ratio as a function of
time for the new simulation.

By swapping the masses we are able to remove all of the effect of dynamical
mass segregation up to that point and determine what amount of dynamical
mass segregation is effecting the cluster after that point. We have plotted the
results of this experiment in Figure 3.5.

In Figure 3.5a we plot the “natural” evolution of the cluster, with no mass
swapping going on. e horizontal green line, which is common to all six sub-
figures, is plot at a mass segregation ratio of 1, which is exactly non-segregated.
e other lines mark the mass segregation ratio for different number of parti-
cles, n, from 3 to 193 particles in steps of 10, as shown in the legend.

We note that the mass segregation is highest for the fewest number of par-
ticles; this is expected since when we measure the mass segregation for 3 par-
ticles it is the the 3 most massive particles and for 13 it is the 13 most massive,
so it follows that the most massive particles would be the most mass segre-
gated. Caputo et al. (2014) examined these type of collapsing clusters in detail
and found that at for an initially cold system, such as in this case, the deep-
est moment of collapse, the moment with the highest density, happens at 1.46
N-body times, which is visible with a local peak in the mass segregation at
the same time in Figure 3.5. Also note the gradual rise in the mass segregation
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(a) No masses switched.
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(b) Masses randomly switched at
0.9 N -body times.
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(c) Masses randomly switched at
1.25 N -body times.
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(d) Masses randomly switched at
1.5 N -body times.
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(e) Masses randomly switched at
1.75 N -body times.
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(f) Masses randomly switched at
2.1 N -body times.

Figure 3.5: Mass segregation as a function of time for different number of particles as show in the
legend. (a) shows the evolution of the mass segregation as it would normally occur, i.e. without
switching mass. (b)–(f) show the evolution of the mass segregation with the masses being randomly
switch at 0.9, 1.25, 1.5, 1.75, and 2.1 N -body times, respectively.
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starting around 0.6N-body times for most particle sets. is rise maybe the re-
sult of sub-clusters forming and then mass segregating or it maybe the result of
an increase in density as the density of the whole cluster increases. Finally, we
note that with the exception of the set of three particles the none of the other
sets even rise to a mass segregation ratio of two before or during the collapse.

Figures 3.5b–3.5f show the simulations where we have randomly swapped
the masses at different times: 0.9, 1.25, 1.5, 1.75, and 2.10 N-body times re-
spectively. In Figure 3.5d we swap the masses just as the cluster is at the deepest
part of its collapse; and the other plots are spaced at 0.25 and 0.6N-body times
before and after that time. e swap can be seen in each plot by the sudden drop
in the mass segregation ratio at the designated time.

Peculiarly themass swap shown in Figure 3.5b actually produces an increase
in the mass segregation of the three most massive particles. While this is not
the intended effect of the swapping the masses, it is a natural outcome when
randomly reassigning the masses to sometime put the more massive particles
close together; this can be seen as similar to primordial mass segregation (the
effects of which we do not explore here).

We observe the general trend that the when the mass is swapped before
the deepest moment of the collapse, 1.46 N-body times, after the collapse the
mass is always highly segregated compared to when the mass is swapped at
or after the collapse which leads to no or at a minimum much reduced mass
segregation. is leads us to conclude that the whatever the mechanism is that
is driving the future mass segregation it is happening before or at the moment
of deepest collapse, i.e. 1.46 N-body time.

In order to distinguish between the two mechanisms suggested above we
must carefully examine Figures 3.5b and 3.5c. In Figure 3.5b we are just able to
see the steady rising of the mass segregation that we mentioned above started
around 0.6 N-body times, then we swap the masses and the segregation ratio
gets reset to unity. It then starts to slowly rise again with most of the particle
sets reaching the same degree of mass segregation at the local maxima around
1.5N-body times, though decidedly without the strong drop off following that
peak as seen in Figure 3.5a.

Figure 3.5c again shows the rise from around 0.6 N-body times, and since
the simulation runs longer without the mass being swapped it reaches a higher
level of segregation before it is rushed back to unity with the masses being
swapped at 1.25 N-body times. Just a before the segregation ratio rises again,
but the particle sets do not tend to reach the same degree of mass segregation
as before.

While there are minor differences between the mass segregation in these
simulations up to the collapse, they are more similar than not after another N-
body time, particularly when compared to the other cases (3.5d–3.5f). e fact
that the systems show such similarities after we had removed the effect of early
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Figure 3.6: The mass segregation ratio as a function of time for several FoVs as indicated
in the legend.

segregation (possibly from sub-clusters segregating) suggest that the dominate
mechanism leading to this rapid mass segregation is due to the short duration
of very high density at the moment of deepest collapse.

3.4.3 Effect of the Initial FoV on Mass Segregation

Caputo et al. (2014) defined FoV to be 2Q where Q is the more traditionally
defined virial ratio, Q ≡ |T/V | where T and V are the kinetic and potential
energies, respectively. For example, since a system in virial equilibrium has a
Q value of 0.5, its FoV would be 1.0. Caputo et al. (2014) showed that many
cluster parameters are directly impacted, and in some cases even dominantly
controlled, by the initial FoV. In Figure 3.6 we show the significance on the
initial FoV on the evolution of the mass segregation of a cluster.

Figure 3.6 is a plot of time versus the mass segregation ratio for initial FoVs
ranging from 0.0 to 1.0. Lower initial FoVs, initially colder systems, are toward
the left of the plot because they seem to segregate more quickly than initially
warmer systems. Caputo et al. (2014) found that the most likely initial FoV
for a cluster was between 0.36 and 0.49, which corresponds to the purple and
blue curves in the plot, and that R136 most likely formed with an initial FoV
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of 0.25 which corresponds to the pink curve.
e effect of increasing initial FoV seems to be two fold: first, the time

at which the mass begins to segregate is delayed with an increase in FoV, and
second, the degree of mass segregation tends to decrease as FoV increases. e
second of these effects are explained by observations in Caputo et al. (2014).
We note that the depth of the collapse is a function of FoV, namely Rmin ≈
Q+N−1/3 where Rmin is the minimum radius reached during the collapse, Q
is as defined above FoV/2, and N is the number of particles, which for these
simulations is constant.at we find a correlation between a deeper collapse, i.e.
smaller FoV, and the more mass segregated the system becomes seems natural.

3.5 Conclusion
We have introduced a new method to measure and quantify mass segregation.
is method is based on determining the ratio of the average nearest neighbor
distance of the most massive particles with respect to the average the nearest
neighbor distance of several sets of randomly chosen particles. is method is
very similar in principle and results to the MST method developed by Allison
et al. (2009b), however we show that this new method is dramatically faster,
providing an ≈1000 times speedup over the MST method for 200 particles.
With such a speedup we are able to do science that was unaccessible using the
previous method, such as measuring the mass segregation ratio of 10 per cent of
simulations with 104− 106 particles. We estimate that our new method would
require nearly 12 hours to measure the mass segregation, out to 10 per cent, of
a 106 particle system, the old method would require more than a career’s worth
of time (using current hardware, not hardware from 20 years from now).

We then applied this method to simulations of a collapsing cluster to better
understand the mechanism which drives rapid mass segregation. We perform
an experiment to disentangle whether the rapid mass segregation is a result of
sub-clusters mass segregating or the result of the very high density near the
deepest part of the collapse. e experimental technique was to randomly swap
the masses of particles at and near the critical moment of deepest collapse, thus
allowing us to nullify any earlier mass segregation and so to isolate the degree
of mass segregation that could be produced from that point forward.

e results are definitively that something prior to or at the collapse is re-
quired to drive the rapid mass segregation. By changing the time before the
deepest part of the collapse we are able to show that while the sub-cluster mass
segregation mechanism may play a role, the dominate drive of the rapid mass
segregation is environment when the cluster is nearly at the deepest part of the
collapse, likely the very high density.
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Black holes have been detected with masses less than 102 and greater than 106 M⊙,
but black holes with masses in the intermediate range are conspicuously absent. How-
ever, recent estimates of the mass of HLX-1, currently the strongest intermediate mass
black hole (IMBH) candidate, suggest an approximate mass of 104 M⊙, and recent
estimates of the mass of M82 X-1 suggest a mass of 4× 102, placing them within the
missing black hole range. is raises the question of whether these are unique objects
or if many more of these objects should be expected. In this letter, based on stellar
evolution simulations and reasonable assumptions, we estimate the number of HLX-1
like IMBHs expected within the distance of 100 Mpc to be within an order of ≈ 106,
or ≈ 102 IMBHs within a galaxy, and about two orders of magnitude more when
considering less massive IMBHs using M82 X-1 as a prototype.

In the process of estimating this value we determine the form of the mass function
within the sphere of influence of a newly formed IMBH to be a power law with a slope
of -1.83. Furthermore, we find we are only able to fit both the period and luminosity of
HLX-1 with a stellar companion with a mass between ≈ 10− 11 M⊙, a result which
is fairly robust to the mass of the IMBH between 103 and 105 M⊙.
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4.1 Introduction

4.1 Introduction

It is generally accepted that both stellar mass and supermassive black holes
have been definitively detected in large numbers. Intermediate mass black holes
(IMBHs), on the other hand, have never been detected with such certainty and
even the strong candidates are few in number (Gladstone 2013). Moreover,
there has been a long history of IMBH candidates turning out to be not needed
or other, less exotic, objects (e.g. Baumgardt et al. 2003; Schödel et al. 2005).
ere are indeed several IMBH candidates, but still definitive proof and precise
mass measurements of them elude the community. In this letter we estimate the
number of IMBHs in the local universe, based on the assumption that IMBHs
do in fact exist, that the strongest IMBH candidate is representative of the yet
unknown population of IMBHs, and that all the X-ray outburst from suspected
IMBHs are the result of mass transfer directly from stars in orbit around the
IMBH which are overflowing their Roche lobe (Kaaret and Feng 2007; Lasota
et al. 2011).

e benefit of estimating the size of a hereunto unknown population of
IMBHs is in understanding the expectation of observing additional IMBHs
in the future. If IMBHs are plentiful then they will play an important, and
interesting, role in the evolution of galaxies (Ebisuzaki et al. 2001). In that case
it will be important to seek out these objects to fully understand their role, and
doing so will require carefully constructed experiments and observation time on
telescopes to carry out those experiments. If, however, IMBHs are indeed very
rare, were they the seeds of the current supermassive black holes or could the
few examples simply be “failed” supermassive black holes? In this case, theorists
need to work hard to understand why Nature, while so willing to allow for both
its small and truly massive brethren, is stingy with these middle-child black
holes.

Currently the strongest IMBHcandidate isHLX-1.ough there are other
suggestions about its true nature (King and Lasota 2014), its very unusual prop-
erties give it the strongest chance of being an IMBH. M82 X-1 is also a strong
IMBH candidate, with mass estimates ranging from a couple×102 to 103 M⊙.
For this work we will consider HLX-1 and M82 X-1 as the only bona fide ultra
luminous X-ray source IMBHs observed to date.

4.2 Observational Constraints
HLX-1 and M82 X-1

Ultraluminous X-ray sources are defined as being extra-nuclear in location and
having an X-ray luminosity in excess of 1039 erg s−1 (Roberts 2007). Farrell
et al. (2009) identified a unique, extra-nuclear source in the edge-on spiral
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galaxy ESO 243-49 with an X-ray luminosity in excess of 1042 erg s−1. Us-
ing the term coined by Matsumoto et al. (2004), hyperluminous X-ray source
(HLX), Farrell et al. (2009) called this object HLX-1. Based on the nature of
HLX-1 they suggested that it was the premier IMBH candidate. Mass esti-
mates for HLX-1 have ranged from > 500 M⊙ (Farrell et al. 2009), to be-
tween 9.2 × 103 and 9.2 × 104 M⊙(Webb et al. 2012), to between 6.3 × 103

and 1.9× 105 M⊙ (based on modeling of the accretion disk while varying the
spin of the hole; Straub et al. 2014). After continued observations Webb et al.
(2012) showed a very regular X-ray outburst frequency of once per year, al-
though the most recent outburst, starting at the end of 2013, was delayed by
more than 30 days (Godet et al. 2014). e peak luminosity corresponds to
an accretion rate of 4 × 10−4 M⊙ yr−1 (Godet et al. 2012). Wiersema et al.
(2010), using Hα emission, found HLX-1 to be at a redshift consistent with
ESO 243-49, and placed HLX-1 inside ESO 243-49, at a distance of 95 Mpc.
Another popular IMBH candidate, M82 X-1, is located 5.2 Mpc away (Liu
and Bregman 2005), with an X-ray luminosity of 5×1040 erg s−1 and 62 day
period (Kaaret and Feng 2007), and a mass between ≈ 3 × 102 and 103 M⊙
(Pasham et al. 2014; Mucciarelli et al. 2006). ough several estimates place
its mass as low as ≈ 20 M⊙ (Dewangan et al. 2006; Okajima et al. 2006).

4.3 Methods
In order to estimate the number of IMBHs in the local universe we must know
the probability of detecting such objects. is probability is based on the like-
lihood of a star of a given mass orbiting the black hole, the length of time that
star would be transferring enough mass to produce an X-ray flux above the
background, and the probability of detecting such an object given the sensitiv-
ity of the observatory. e number of observed IMBHs can thus be described
as:

Nobs = NIMBH ×Nmass transfer × Pdetection. (4.1)

We find the number of IMBHs by solving for NIMBH :

NIMBH =
Nobs

Nmass transfer × Pdetection
. (4.2)

Where NIMBH is the number of IMBHs, Nobs is the number of IMBHs ob-
served as ULXs, we assume currently this limited to HLX-1 and M82 X-1.
Nmass transfer is the average number of stars that an IMBH will have in an
orbit such that the star could overflow its Roche lobe (RLOF) and thus able to
transfer mass onto the hole. Extrapolating from a linear fit of the simulation
data of Blecha et al. (2006) we find that a 103 and 104 M⊙ black hole should
have, on average, 2.2 and 19.6 stars, respectively, in a mass transferring orbit
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over the duration of their simulations (100 Myr). Pdetection is dependent on
the probability that the system is in an ‘active’ state. But different stellar masses
have different active times so we must scale the probability a system is active by
the probability that a given mass would be present around an IMBH, i.e. using
the normalized mass function found around the black hole; that is,

Pdetection =

Mmax∫
Mmin

Pactive × Pmass|mass functiondm. (4.3)

e likelihood of finding the star-black hole system in an active state, i.e.Pactive,
is the fraction of the star’s lifetime spent transferring mass above a given rate.
Because the star is transferring mass its evolution and lifetime are altered and
so we must perform stellar evolution simulations of stars which are losing mass
via RLOF. In Section 4.3.1 we provide more details about the simulations we
perform. We convert the measured mass transfer rate to an X-ray luminosity
using a 10 per cent efficiency rate and assuming that all of the mass lost from
the star is accreted onto the black hole, and then we calculate the fraction of
time spent over a given luminosity.

Lastly, Pmass|mass function is measured from data taken from simulations
of IMBH formation via collision run away (Fujii et al. 2012). Measurement of
this value is addressed at length in Section 4.3.2.

4.3.1 Mass Transfer

In order to measure the fraction of time a star of a given mass would spend
transferring mass to its IMBH companion to the total age of the star, Pactive,
we have run stellar evolution models of stars as they transfer mass to an IMBH.
We have used a stellar evolution code and numerical methods to model a star in
orbit around an IMBH wherein we vary the mass of both the IMBH and stars,
as well as the eccentricity of the orbit. e star is placed on an orbit with a given
eccentricity and its semi-major axis is allowed to grow such that it is always just
over flowing its Roche lobe at pericenter, it is then evolved, using the AMUSE
framework (Portegies Zwart et al. 2012; Pelupessy et al. 2013), with the stellar
evolution code MESA (Paxton et al. 2011). At every step of the evolution the
amount of mass transfer, ṁ, from the star to the IMBH is calculated based
on the analytical prescription described below and that mass loss is provided
to the stellar evolution code which adjust the evolution accordingly. With such
models we determine the time spent transferring mass above a certain rate, the
lifetime of the star given this mass loss rate, and if such a model could produce
a system as described in Lasota et al. (2011).

We calculate the mass loss from the donor by solving Equation 1 in Porte-
gies Zwart et al. (2004) which provides a calculation for the change of the
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semi-major axis, ȧ, based on the effects of gravitational radiation, Roche lobe
overflow and mass loss via stellar wind. For our calculations we neglect the
wind and assume that the mass in the system is conserved, then solving for ṁ
we find:

ṁ =

(
ȧ

a
− 64

5

G3

c5
m⋆m•mt

a4

)
/

(
2

m⋆
− 2

m•

)
, (4.4)

where a and ȧ are the semi-major axis and its time derivative respectively;G and
c are the gravitational constant and the speed of light in vacuum respectively;
and finally m⋆, m•, and mt are the masses of the donor star, the black hole,
and the total system mass respectively.

Our simulations are very similar to those found in Patruno et al. (2005),
Madhusudhan et al. (2008), and Patruno and Zampieri (2008), the primary
difference being that we calculate the mass loss from the donor via the methods
in Portegies Zwart et al. (2004) for ṁ and then evolve the companion in a stellar
evolution code to which we provide the mass loss rate we have calculated. e
secondary difference between our method and those of the previous works is
that we calculate the size of the Roche lobe with a correction for the eccentricity
of the orbit based on Equations 51 and 52 of Sepinsky et al. (2007). Even with
these two differences our work agrees well with the previous work.

From these simulations we calculate the mass transfer per unit time, i.e. the
luminosity, and the orbital period of the star around the black hole.

4.3.2 Mass Function

In order to calculate the probability of a star being in orbit around an IMBH,
Pmass|mass function, we must first know how the stellar masses are distributed,
i.e. the mass function near the black hole. We perform these calculations using
two different mass functions. First, we calculate the probability of a star of a
given mass orbiting a black hole by using a Salpeter mass function (Salpeter
1955) with masses between 1 and 100 M⊙. is generic stellar mass distribu-
tion yields a probability distribution function of:

PDFSP = 1.35×M−2.35. (4.5)

Where M is the mass of the star in units of M⊙.
e second mass function we used is derived from N-body simulations

by Fujii et al. (2012). In their set of simulations stars were allowed to collide
and merge which in some cases resulted in a collision runaway, producing very
massive stars of up to about 500 M⊙. Upon their death stars of such a mass
would produce an IMBH (Portegies Zwart and van den Heuvel 2007). Porte-
gies Zwart and McMillan (2002) suggested this method for IMBH formation.
Fujii et al. (2012) have provided a successful test of this possible formation the-
ory. In that work they used the Salpeter function as their initial mass function,
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but after 3 Myr the mass function near the black hole had changed dramatically
with a larger fraction of high mass stars near the black hole than the Salpeter
function would have predicted. As we will mention later, this has a dramatic
effect on the number of predicted IMBHs, and we speculate that the careful
choice of a realistic mass function will have a similarly profound impact on the
results of other studies. But the significance for this work lies in being able to
measure the distribution of stellar masses near a newly formed IMBH. By de-
riving the mass function from a self-consistent N-body simulation of collision
runaway we are able to produce a much more realistic mass function for what
might be found around an IMBH. We used the data from when the cluster was
≈ 3 Myr old, as that corresponds to when the very massive star would collapse
into an IMBH (Portegies Zwart et al. 1999). We find that a broken power law
of the form:

M−2

65
, for 1 M⊙ ⩽ M ⩽ 11 M⊙ (4.6)

40M−1.05, for 11 M⊙ ⩽ M ⩽ 100 M⊙ (4.7)

describes this more realistic mass function for the 500 stars closest to the black
hole in these simulations. However, if we consider only the stars in the sphere
of influence of the black hole we find that the data are best fit by a single power
law of the form:

M−1.83, for 1 M⊙ ⩽ M ⩽ 75 M⊙. (4.8)

From this we obtain a probability distribution function of:

PDF = 0.85×M−1.83. (4.9)

4.4 Results and Discussion
We have run stellar evolution simulations of stars transferring mass to black
holes with masses of 103, 104, and 105 M⊙ with 17 different stellar masses
between 4 and 40 M⊙ and orbital eccentricities of 0.7, 0.8, 0.9, 0.95, and 0.99.
Figure 4.1 is a plot of the stellar mass (bottom panel) and corresponding X-ray
luminosity due to mass accreation onto the black hole (top panel). e mass
of the black hole is 104 M⊙ and the orbital eccentricity is 0.99. For clarity we
have only plotted five different initial stellar masses of the 17 such simulations
we ran for all black hole masses and eccentricities we examined.

From Figure 4.1 we note that the average X-ray luminosity increases with
initial stellar mass. However, the peak luminosity is more consistent; we find a
dramatic increase in luminosity at the end of the star’s luminosity curve. is
results from these stars going through a giant stage, quickly growing the stellar
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radius and so a large amount of mass falls outside of the Roche lobe at peri-
center. is can be seen in the bottom panel of Figure 4.1 with the sudden
mass loss at the same time. After this impressive mass loss the star’s envelope
remains well within the Roche lobe and so there is generally no more mass loss.
For initial masses less than or equal to 11 M⊙ this can, but does not always,
happen a second time though generally with a lower luminosity. e peak lu-
minosity, ≈ 1042 erg s−1, is fairly constant for these events, with only a weak
dependency on initial mass. We find these results hold regardless of black hole
mass and orbital eccentricity, but that is partially due to our assumptions that
all of the mass lost from the star falls onto the black hole and that we do not
allow the orbit to circularize. Allowing the orbit to circularize would have a
limited effect because mass transfer rates are only very weakly related to the
eccentricity of the orbit in our approximation (see e.g. Equation 4.4).
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Figure 4.1: The mass and X-ray luminosity as a function of time. The top panel
shows the X-ray luminosity while the bottom panel shows the mass for five different
initial masses as shown in the legend.

4.4.1 The Mass of HLX-1’s Companion and the Mass Func-
tion Around the IMBH

ough we have not plotted it here, we also determine the evolution of the
associated orbital period for all the simulations. If our aim were to reproduce
HLX-1 with the added constraint of its roughly one year period we find only
a relatively small range of initial stellar masses, between 10 and 11 M⊙, that
can produce the observed peak luminosity and the period simultaneously. is
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Figure 4.2: The cumulative number of stars as a function of mass. The red dashed
line is the fit to the data (solid blue line). The fit is a power law with a slope of
-1.83.

mass estimate is less than the turnoff mass of the young cluster around HLX-1
based on the age estimate from Soria et al. (2012) and is inline with the turnoff
mass from the age estimate of Farrell et al. (2012), 6 and 13 Myr respectively.
is would exclude the both sets of results which suggest a companion mass of
either ≈ 2 or 20 M⊙.

In Figure 4.2 we have plotted the stellar mass function in the sphere of
influence of an IMBH just after formation via collision runaway. e solid blue
line plots the cumulative number of stars as a function of mass, and the dashed
red line plots the fit to the data. We find that the best fit is a power law with a
slope of -1.83.

4.4.2 The Number of IMBHs

Using the stellar evolution simulations, the mass function near a newly formed
IMBH, and Equation 4.2 we find that there should be ≈ 106 black holes like
HLX-1 within 100 Mpc. If these were to be distributed uniformly throughout
that volume we would expect ≈ 1 IMBHs per cubic Mpc, however these ob-
jects will be preferentially found in and around galaxies. Using Gourgoulhon
et al. (1992) we estimate ≈ 10, 000 galaxies within that volume and assum-
ing IMBHs are equally distributed amongst all galaxies we predict≈ 100 such
IMBHs per galaxy. Of course, if these numbers are dryamtically wrong it would
suggest that, for example, our mass transfer model is wrong or that HLX-1 is
not an IMBH.
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Applying the same methods to M82 X-1 we find there should be ≈ 106

M82 X-1black holes within 22 Mpc (the distance at which M82 X-1 would
become unobservable with a flux limit of 1038 erg s−1 Mpc−2). Assuming a
constant IMBH density we extrapolate that there should be ≈ 108 of these
lower-mass IMBHs within 100 Mpc. Again using the 10,000 galaxies from
Gourgoulhon et al. (1992) we estimate there should be ≈ 104 M82 X-1 like
black holes within an average galaxy.

While 104 may seem large, the mass of M82 X-1 is estimated to be be-
tween a couple ×102 and 103 M⊙ and if IMBH masses are distributed along
a continuum it does not seem unreasonable that there would be, for example,
many more 5 × 102 M⊙ than 104 M⊙ IMBHs (such as HLX-1). An addi-
tional concern may be where to harbor so many objects; globular clusters seem
to be a natural place to find such objects and with about 160 globular clusters
in our Galaxy our prediction for the number of more massive objects, i.e. the
≈ 100 which are HLX-1 like, would, as an order of magnitude estimate, fit
neatly within the number of globular clusters.

e lower mass,102 − 103 M⊙, IMBHs could form, via collision runaway,
and reside in young clusters as suggested in van denHeuvel and Portegies Zwart
(2013), who also claim the signature of the formation of these IMBHs would
be superluminous supernovae (SLSNe). Assuming SLSNe always produce an
IMBH we can estimate IMBH numbers from the number of SLSNe. Gal-Yam
(2012) provides a rate for SLSNe of 10−8 Mpc−3 yr−1, giving:

10−8 Mpc−3yr−1 × 1010yr × (102Mpc)3 = 108 SLSNe (4.10)

within the age of the Universe and out to a distance of 100 Mpc. Perhaps sur-
prisingly, this second method, using a physically unrelated model, serendipi-
tously agrees with the results we found using the method outlined above. Addi-
tionally, we note that van den Heuvel and Portegies Zwart (2013) suggest that
these events, and hence IMBHs, are not equally distributed amongst galaxies
but rather they find that the Milky Way is expected to under-produce these
events by a factor of 102 compared to compact blue galaxies. is means the
number of lower mass IMBHs in the Milky Way could be as low as 102.

As these young clusters evaporate, if they evaporate, their IMBHs would
be left with at most only the few stars within the IMBH’s sphere of influence.
If there are such low-mass IMBHs threading their way though the Milky Way
then Gaia may provide a unique opportunity to spot them.

As Gaia (de Bruijne 2012) observes a billion or so stars in the Milky Way,
making very high precision measurements of the peculiar motion of the stars,
it should observe some systems for which their motions can only be explained
with the addition of an IMBH. However, if there are in fact only 102 such
IMBHs in the Milky Way, and Gaia is only sampling 1 out of every 102 stars
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in the Milky Way we would expect to detect on order of 1 of these objects. Of
course, as with the rest of this letter, caution must be taken when considering
such low number statistics.

e spatial distribution of these systems should not deviatemuch from their
initial distribution, at least not as a result of dynamical friction since for the
103 M⊙ case dynamical friction should only result in an inward migration of
the black hole of ≈ 40 pc, and only ≈ 0.4 kpc even for a 105 M⊙ black hole in
13 Gyr (assuming a value of 6 for the Coulomb logarithm). Additionally, the
all-sky, X-ray survey provided by eROSITA (Merloni et al. 2012), with an an-
ticipated launch data in 2016, will likely provide many more IMBH candidates
with its sensitivity and long expected exposure time.

4.4.3 IMBHs in Relation to Other Black Holes

Finally, in Table 4.1 we compile the number and total mass of different types
of massive objects (stars, stellar mass black holes (StMBHs), IMBHs, and
SMBHs) in both our Galaxy and with a sphere with a radius of 100 Mpc.
Here we outline how we arrived at these values: In the Milky Way there is one
observed SMBH, Sgr A*, with a mass of 4.1 × 106 M⊙ (Ghez et al. 2008).
Caramete and Biermann (2010) estimate a total number of SMBHs within
100 Mpc with masses > 107 M⊙ to be about 2.4 × 104 and from the mass
density provided therein we estimate a total mass of 2.8× 1011 M⊙ within the
same volume. We must be careful to note that while the number of SMBHs
within 100 Mpc may be larger due to excluding the SMBHs with masses< 107

Caramete and Biermann (2010) claim the total mass is barely dependent on the
cutoff due to a flattening of the integral mass function at lower mass. In this
work we have calculated the values for the number of IMBHs within 100 Mpc
and within the Milky Way. In order to estimate the total mass of the IMBHs
we used the data of Moran et al. (2014) and find an average IMBH mass of
≈ 6.7 × 103 M⊙ and we assume this value for both within 100 Mpc and
the Galaxy. To find the number of StMBHs we estimate that approximately 1
out of every 1000 stars in a Kroupa mass function (Kroupa 2001) are massive
enough (> 20M⊙) to produce a StMBH at the end of their life, and Özel et al.
(2010) provided an estimate of typical Galactic StMBH to be 7.8 M⊙—again
we assume this value is valid within 100 Mpc in addition to the Milky Way.
e number of stars in the Milky Way is ≈ 3× 1011 and we measure the aver-
age stellar mass from a Kroupa mass function to be ≈ 0.4 M⊙ for a total mass
of 1.2 × 1011 M⊙. To find the number of stars within 100 Mpc we take the
stellar mass density from Dickinson et al. (2003) and find a total stellar mass of
4×1014 M⊙, continuing to use an average stellar mass of 0.4 M⊙ we then find
1 × 1015 stars. We find an ideal fit of the number of black holes versus mass
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In Milky Way Within 100 Mpc
Number Mtotal[M⊙] Number Mtotal[M⊙]

SMBH 100 4.1× 106 2.4× 104 2.8× 1011

IMBH 1× 104 6.7× 107 1× 108 6.7× 1011

StMBH 3× 108 2.1× 109 4× 1011 2.8× 1012

Stars 3× 1011 1.2× 1011 1× 1015 4× 1014

Table 4.1: The estimated number and total mass of SMBHs, IMBHs, StMBHs, and Stars
within the Milky Way (left two columns) and within 100 Mpc (right two columns).

with a power law of the form:

N = 4.95× 109M−1.47, (4.11)

where N and M are the number and average mass of the black holes, respec-
tively.

4.5 Conclusion
We have determined the stellar mass function within the sphere of influence
of a newly formed IMBH to be of the form M−1.5. is mass function com-
bined with the fraction of time a star is transferring mass to the black hole, the
probability that an IMBH would have a star in an orbit that it could transfer
mass via RLOF, and the number of IMBHs observed allows us to estimate the
number of IMBHs within 100 Mpc (the distance to HLX-1). We find that
within 100 Mpc there should be on the order of 108 IMBHs, the majority be-
ing M82 X-1 like (102−103 M⊙) with only 106 being HLX-1 like (104 M⊙).
is translates into ≈ 104 IMBHs within each galaxy in that volume assuming
they are equally distributed amongst 104 galaxies. e uncertainty in our esti-
mation is dominated by our assumptions (e.g. that IMBHs exist in this current
epoch, that HLX-1 and M82 X-1 are such IMBHs and are representative of
a larger population, that ULX IMBHs are powered by RLOF and there are
not more than a few other RLOF powered IMBHs currently in an active state,
etc.) which make estimating the error a bit artificial; if for example, the mass is
not being accreted via RLOF or HLX-1 and M82 X-1 are not IMBHs then
our model is not able to estimate this population. However, if there is dramati-
cally more than an order of magnitude of unidentified RLOF powered IMBHs
within the flux limits of current surveys then we could have underestimated the
number. Due to these difficulties we estimate the error to be at least an order
of magnitude. We are hopeful that results from Gaia and the upcoming X-ray
mission eROSITA (Merloni et al. 2012) will help to clarify many of these out-
standing questions and perhaps identify IMBHs through dynamical means.
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As an unexpected result we found that a simultaneous fit to the mass loss
and apparent period of the star overflowing its Roche lobe to HLX-1 was only
possible in our simulations with a companion mass between 10 and 11 M⊙.
is is also in line with the turnoff mass based on the age estimate of the young
cluster around HLX-1. However, this mass estimate would exclude a sugges-
tion that the companion is 2 or 20 M⊙.

Finally, we show inTable 4.1 how our results of expected number of IMBHs
compares to other estimates of numbers andmass of stars, StMBHs, and SMBHs
in our Galaxy and within 100 Mpc. We find that the number and total mass in
IMBHs that we predict seems to fit well within these ranges. Fitting the num-
ber of black holes versus mass with a power law we findN = 4.95×109M−1.47

produces a fit with an R2 value of 1.0.
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We develop a method to analyze the effect of an asymmetric supernova on hierarchical
multiple star systems and we present analytical formulas to calculate orbital parameters
for surviving binaries or hierarchical triples and runaway velocities for their dissociating
equivalents.e effect of an asymmetric supernova on the orbital parameters of a binary
system has been studied to great extent (e.g. Hills 1983; Kalogera 1996; Tauris and
Takens 1998), but this effect on higher multiplicity hierarchical systems has not been
explored before. With our method, the supernova effect can be computed by reducing
the hierarchical multiple to an effective binary by means of recursively replacing the
inner binary by an effective star at the center of mass of that binary.

We apply our method to a hierarchical triple system similar to the progenitor of
PSR J1903+0327 suggested by Portegies Zwart et al. (2011). We confirm their earlier
finding that if PSR J1903+0327 could have evolved from a hierarchical triple that
became unstable and ejected the secondary star of the inner binary, it would be most
probable to have had a small supernova kick velocity, the inner binary would likely have
had a large semi-major axis, and the fraction of mass accreted onto the neutron star to
the mass lost by the secondary most likely be between 0.35 and 0.5.
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5.1 Introduction

5.1 Introduction

Asymmetric supernovae in binary and hierarchical multiple star systems form
a crucial phase in the formation of stellar systems containing a compact stellar
remnant - neutron star or black hole. In previous studies of supernovae in bina-
ries two effects of the supernova are considered: 1) sudden mass loss of, and 2)
a random kick velocity imparted on the compact remnant of the star undergo-
ing the supernova. e combined effect which changes the orbital parameters
causes the binary to dissociate in the majority of the cases.

e study of binaries surviving a supernova (SN) explosion of one of its
components was first performed by Blaauw (1961) and Boersma (1961), as-
suming a symmetric SN (i.e. only mass loss). e necessity of asymmetry in
the SN, resulting in the kick velocity, was first suggested by Shklovskii (1970).
e statistical study on pulsar scale heights by Gunn and Ostriker (1970) firmly
supported the asymmetric SN model and to date the adding of the kick velocity
to the newly born neutron star (or black hole) is a commonly excepted mech-
anism (van den Heuvel and van Paradijs 1997). Both the type of explosion
mechanism and whether the exploding star is in a binary system are found to
influence the effect of the kick velocity (see e.g. Podsiadlowski et al. 2004), but
the exact physical process underlying the production of kicks remains unclear.
e analysis of the effect of asymmetric supernovae on binaries has been suffi-
cient to explain most of the observed post-SN stellar systems, and little to no
effort has gone into studying the effect on hierarchical multiple star systems.

Millisecond pulsar (MSP) J1903+0327 (spin period ≃ 2.15 ms), first ob-
served by Champion et al. (2008) and later, in more detail, by Freire et al.
(2011), is part of what may be the first observed MSP binary to have evolved
from a hierarchical triple progenitor. MSP J1903+0327 is orbited by a main
sequence star in a wide (orbital period ≃ 95.2 days) and eccentric (eccentricity
e≃ 0.44) orbit. Based on these observables it seems impossible that this binary
(hereafter J1903+0327) formed via the traditional mechanism in a binary pro-
genitor (Champion et al. 2008). Portegies Zwart et al. (2011) proposed that
the progenitor system was a binary accompanied by a third and least massive
main-sequence star in a wider orbit about this binary. During the low-mass
X-ray binary (LMXB) phase of the inner binary, the orbit of the LMXB ex-
panded due to mass transfer from the evolving inner companion (donor) star to
the neutron star, which was formed in the SN. is eventually caused the triple
to become dynamically unstable and to eject the inner companion resulting in
the observed system J1903+0327.

J1903+0327 is not a unique case, however: there is a significant number
of systems like the progenitor of J1903+0327 as suggested in Portegies Zwart
et al. (2011) and similar hierarchical stellar systems of higher multiplicity. e
Multiple Star Catalog lists 602 triples, 93 quadruples, 22 quintuples, 9 sextuples

- 64 -



Supernova in Multiple-Star Systems

and 2 septuples (Tokovinin 1997) of which 90 systems contain at least one star
with a mass M ⩾ 10 M⊙. Each of these multiples will eventually experience
a core-collapse SN of the most massive star. After the SN these systems are
either fully dissociated, dissociate into lower multiplicity multiple star systems,
or survive the SN.

We begin the study of the effect of an asymmetric SN on hierarchical multi-
ple star systems by first readdressing the SN effect on a binary and subsequently
treating the effect in a hierarchical triple. We show that a hierarchical triple can
effectively be regarded as a binary system comprised of the center of mass of
the inner binary and the tertiary star. e effect of a SN on a hierarchical triple
system, now reduced to an effective binary, can be calculated using the prescrip-
tion for a SN in binary. We ultimately generalize this effective binary method
to hierarchical multiple star systems of arbitrary multiplicity. In the second part
of the paper we perform Monte Carlo simulations of a hierarchical triple star
system similar to the progenitor of J1903+0327 suggested in Portegies Zwart
et al. (2011) to determine the (stable) survival rates, and evaluate whether such
a formation route is plausible.

5.2 Calculation of post-SN parameters

5.2.1 Binary systems

Weconsider a binary system of stars withmass, position and velocity for the pri-
mary and secondary star, given by (m1,0,r1,v1,0) and (m2,r2,v2,0) respectively1,
in which the primary undergoes a SN. e binary system is uniquely described
by the semi-major axis, a0, eccentricity, e0, and true anomaly, θ0. e sep-
aration distance is r0. We assume that the SN is instantaneous, meaning an
instantaneous removal of mass of the primary, no SN-shell impact on the com-
panion (secondary) star, and the orbital motion during this mass loss phase is
neglected, i.e. r = r0 and v2 = v2,0.

After the SN the orbital parameters have changed to: semi-major axis, a,
eccentricity, e, and true anomaly, θ. For a general Kepler orbit of two objects
with masses m1 and m2 respectively, a relative velocity, v, semi-major axis, a,
and separation distance, r, the orbital energy conservation equation is

v2 = G(m1 +m2)
(2
r
− 1

a

)
, (5.1)

1e contingent suffix 1, 2, etc. indicates which star we are considering (e.g. 1 for the pri-
mary). e contingent suffix 0 denotes the pre-SN state and when it is absent, it either refers to
the post-SN state or the absence indicates that there is no difference in the pre- and post-SN
states of that parameter.
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where G is Newton’s gravitational constant. e specific relative angular mo-
mentum h is related to the orbital parameters as follows

|h|2 = |r × v|2 (5.2)
= G(m1 +m2)a(1− e2), (5.3)

where the first equality holds for all Kepler orbits and the second only applies to
bound orbits. For thorough studies on SNe in a binary system see Hills (1983),
Kalogera (1996), and Tauris and Takens (1998); the latter authors also take into
account the shell impact on the companion star using a method proposed by
Wheeler, Lecar, and McKee (1975). Following the mentioned works as guides
for our calculations on the binary system we use a total pre-SN mass of M0 =
m1,0+m2. Without loss of generality, we choose a coordinate system in which
at t = 0 the orbit lies in the xy-plane, the center of mass of the binary (cm) is
at the origin, the y-axis is the line connecting the primary and the secondary
(the cm coordinate system; see Figure 5.1), and we choose a reference frame in
which at t = 0 the cm is at rest (the cm reference frame).

Before the SN the separation distance between the stars is

r = r1 − r2 =

(
0,− a0(1− e20)

1 + e0 cos θ0
, 0

)
. (5.4)

Using the following notation

x = a0

√
1− e20 cos γ0 cos θ0 + a0 sin γ0 sin θ0,

y = −a0

√
1− e20 cos γ0 sin θ0 + a0 sin γ0 cos θ0,

v0x = v0
x√

x2 + y2
,

v0y = v0
y√

x2 + y2
,

in which γ0 is the pre-SN eccentric anomaly defined by r = a0(1− e0 cos γ0),
the velocity of the primary relative to the secondary is

v0 = v1,0 − v2 = (v0x, v0y, 0). (5.5)

After the SN the primary has lost a part of its mass, ∆m, and has obtained a
velocity kick vk in a random direction, which makes an angle ϕwith the pre-SN
relative velocity v0. e velocity of the primary relative to the secondary, after
the SN, is

v = v0 + vk = (v0x + vkx, v0y + vky, vkz), (5.6)
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1

cm

x

y
z

v2

a.
e cm coordinate system in the cm reference frame for a binary system

before the SN (at t = 0).

2

1

cm

x

y
z

v2

b.
e cm coordinate system in the cm reference frame for a binary system after

the SN.
Figure 5.1: Schematic representation of a binary system in the pre- and post-SN phase.
The solid blue circles denote the primary and secondary star; the solid red cirle denotes
the cm. The solid arrows denote the velocities the stars or cm have at that phase; the
dashed arrows denote the velocity the SN imposes on the stars or cm which will change
its velocity in the next phase. a. In the pre-SN phase the coordinate system is centered on
the cm being at rest. b. In the post-SN phase the coordinate system is no longer centered
on the cm - the cm has been translated in the y-direction, towards the secondary, and
has gained a velocity vsys. In both cases the inner binary orbital plane lies in the xy-plane
and the y-axis is the line connecting the primary and the secondary.
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the mass of the primary is m1 = m1,0 − ∆m and the total binary mass is
M = M0 − ∆m. Applying these relations and equations (5.1) and (5.2) to
the binary system, we obtain equations relating the post-SN semi-major axis,
a, and eccentricity, e, to both the pre- and post-SN orbital parameters and ve-
locities. Using vc,0 = v0|r=a0 = (GM0/a0)

1/2 as the pre-SN relative velocity
(Hills 1983), we obtain

a

a0
=

(
1− ∆m

M0

)(
1− 2a0

r

∆m

M0
− 2

v0
vc,0

vk
vc,0

cosϕ

−
v2k
v2c,0

)−1
(5.7)

e2 = 1− (1− e20)
M2

0

(M0 −∆m)2

(
1− 2a0

r

∆m

M0
−

v2k
v2c,0

−2
v0
vc,0

vk
vc,0

cosϕ
)

(5.8a)

= 1− a20(1− e20)
2

a(1 + e0 cos θ0)2
(v20x + v2kx + v2kz + 2v0xvkx)

G(M0 −∆m)
,

(5.8b)

which are consistent with Kalogera (1996). In §5.2.3 we present a few exam-
ples regarding the effect of mass loss and the supernova kick on the orbital
parameters of hierarchical triples. To compute the systemic velocity of the bi-
nary system due to the SN, we begin by writing the pre-SN velocities of the
primary and secondary in the cm reference frame; using the pre-SN mass ratio
µ0 = m2/M0, these velocities are given by

v1,0 = µ0

(
v0x, v0y, 0

)
, (5.9)

v2 = (µ0 − 1)
(
v0x, v0y, 0

)
. (5.10)

As a result of the assumption of an instantaneous SN and neglecting the shell
impact, the instantaneous velocity of the secondary remains unchanged after
the SN, but the instantaneous velocity of the primary changes to

v1 =
(
µ0v0x + vkx, µ0v0y + vky, vkz

)
. (5.11)

We now use the post-SN mass ratio µ = m2/M , and find the systemic velocity
of the binary system:

vsys = (1− µ)v1 + µv2

= (1− µ)
(µ0 − µ

1− µ
v0x + vkx,

µ0 − µ

1− µ
v0y + vky, vkz

)
.

(5.12)
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ese results are consistent with the previously mentioned studies on SN in
binaries. As a conseqence a binary in which the compact object does not receive
a kick in the supernova explosion moves through space like a frisbee.

Dissociating binary systems

e mass loss and the kick velocity have a potentially disrupting effect on the
binary system. However, in cases where the mass loss alone would have been
large enough to unbind the binary, the combination of the two can result in the
binary system surviving the SN (Hills 1983). If the binary system dissociates,
the two stars move away from each other on a hyperbolic or, in a limiting case,
a parabolic trajectory. is corresponds to the cases where a < 0 and e > 1
(hyperbola) or a → ∞ and e = 1 (parabola). From equation (5.7) we see
that for a dissociating binary the angle ϕ between the kick velocity vk and the
pre-SN relative velocity v0 satisfies (Hills 1983):

cosϕ ⩾
(
1− 2a0

r

∆m

M0
−

v2k
v2c,0

)(
2
vk
vc,0

√
2a0
r

− 1
)−1

. (5.13)

If the right-hand side of equation (5.13) is less than −1, the binary dissociates
for all ϕ; but if it is greater than 1 the binary survives for all ϕ. If the right-
hand side is within the range −1 to 1, the probability of dissociating the binary
is (Hills 1983):

Pdiss =
1

2

(
1−

(
1− 2a0

r

∆m

M0
−

v2k
v2c,0

)(
2
v0
vc,0

vk
vc,0

)−1)
.

(5.14)

Tauris and Takens (1998) presented analytical formulas to calculate the dis-
sociation velocities for a binary with a pre-SN circular orbit. We follow their
calculation for deriving the runaway velocities of the two stars in dissociating
binaries, but for a pre-SN orbit of arbitrary eccentricity and we ignore the SN
shell impact. We use the cm coordinate system, explained above. Using the
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following shorthand relations

m̃ =
M

M0
,

j =
v20x
v20

− 2m̃
a0

2a0 − r
+

v2k
v20

+
2v0xvkx

v20
,

k = 1 +
j

m̃

2a0 − r

a0
−

v2ky
m̃v20

2a0 − r

a0
,

l =
1

µ

( √
j

m̃v0
vky

2a0 − r

a0
− j

m̃

2a0 − r

a0
− 1

)
,

n =
1

µ

(
1 +

j

m̃

2a0 − r

a0
(k + 1)

)
,

we find the runaway velocities for the primary and secondary star:

v1,diss =
(
vkx

(1
l
+ 1

)
+

(1
l
+ µ0

)
v0x, µ0v0y

+vky

(
1− 1

n

)
+

k
√
j

n
v0, vkz

(1
l
+ 1

))
, (5.15)

v2,diss =
(
−m1vkx

m2l
−

( m1

m2l
+ 1− µ0

)
v0x, (µ0 − 1)v0y

+
m1vky
m2n

− m1k
√
j

m2n
v0,−

m1vkz
m2l

)
. (5.16)

5.2.2 Hierarchical triple systems

We now consider a hierarchical system of three stars with the primary, sec-
ondary and tertiary star havingmass, position and velocity given by (m1,0,r1,v1,0),
(m2,r2,v2) and (m3,r3,v3) respectively. e primary star undergoes a SN and
the inner binary configuration and parameters are the same as in section 5.2.1.
e inner binary center of mass (cm) has a mass ofmcm,0 = m1,0+m2 = M0,
is at position

rcm,0 = (1− µ0)r1 + µ0r2 (5.17)

and has a velocity

vcm,0 = (1− µ0)v1,0 + µ0v2. (5.18)

e cm and tertiary constitute an outer binary defined by the semi-major axis,
A0, eccentricity, E0, and true anomaly, Θ0. e separation distance between
the cm and the tertiary star we denote by R0. Before the SN the outer bi-
nary orbital plane has an inclination i0 with respect to the inner binary and
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the separation distance of the outer binary projected onto the xy-plane makes
an angle α0 with the separation distance of the inner binary. is inner-outer
binary configuration is to some extent acceptable, because the triple is hierar-
chical. is implies that the separation distance of the cm and the tertiary is
large compared to the separation distance of the primary and secondary, i.e.
R0 ≫ r0, so that the tertiary experiences gravitational influence of the inner
binary as if it was coming from one star at the cm. We assume an instantaneous
SN2. Due to the primary undergoing a SN, the inner binary experiences a mass
loss ∆m and an effective kick velocity is imparted to the cm: the systemic ve-
locity of the inner binary vsys given by equation 5.12. In addition, because of
the reduction in mass of the primary, the position of the cm has changed due
to an instantaneous translation along the y-axis

∆R = rcm − rcm,0

= (µ− µ0)
a0(1− e20)

1 + e0 cos θ0

(
0, 1, 0

)
. (5.19)

e orbital parameters change as a result of the SN: the inner binary parameters
change according to the description in section 5.2.1 and the outer binary orbital
parameters change to semi-major axis,A, eccentricity,E, and true anomaly,Θ.
e hierarchical triple before the SN has a total mass Mt,0 = M0 + m3. We
use the cm coordinate system to pin down the inner binary and add to this
coordinate system the tertiary at a position such that R0 ≫ r0 (see Figure 5.2).
We now select a reference frame in which the center of mass of the triple (CM)
is at rest (the CM reference frame).

Prior to the SN the separation distance between the cm and the tertiary is

R0 =
A0(1− E2

0)

1 + E0 cosΘ0

(
cos i0 sinα0,− cos i0 cosα0, sin i0

)
, (5.20)

2See section 5.2.1 and note that the statements about the inner companion (the secondary)
also hold for the outer companion (the tertiary).
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a. e
cm coordinate system in the CM reference frame for a hierarchical triple

system before the SN (at t = 0).

b. e
cm coordinate system in the CM reference frame for a hierarchical triple

system after the SN.

Figure 5.2: Schematic representation of a hierarchical triple star system in the pre- and
post-SN phase. The solid blue circles denote the primary and secondary (inner binary);
the solid red cirles denote the cm and the tertiary (outer binary); the green cirle denotes
the CM. The solid arrows denote the velocities the stars or cm have at that phase; the
dashed arrows denote the velocity the SN imposes on the stars or cm which will change
its velocity in the next phase. a. In the pre-SN phase the coordinate system is centered
on the cm being at rest. a. In the pre-SN phase the coordinate system is centered on the
cm and the CM is at rest. b. In the post-SN phase the coordinate system is no longer
centered on the cm - the cm has been translated in the y-direction, towards the secondary
- and the CM is no longer at rest. In both cases the inner binary orbital plane lies in the
xy-plane and the y-axis is the line connecting the primary and the secondary.
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and, using the following shorthand notation

X = A0

√
1− E2

0 cosΓ0 cosΘ0 +A0 sinΓ0 sinΘ0

Y = −A0

√
1−E2

0 cosΓ0 sinΘ0 +A0 sinΓ0 cosΘ0

X ′ = X cosα0 − Y cos i0 sinα0

Y ′ = X sinα0 + Y cos i0 cosα0

Z ′ = Y sin i0

V0x = V0
X ′

√
X ′2 + Y ′2 + Z ′2

V0y = V0
Y ′

√
X ′2 + Y ′2 + Z ′2

V0z = V0
Z ′

√
X ′2 + Y ′2 + Z ′2

in which Γ0 is the pre-SN outer orbit eccentric anomaly defined by R0 =
A0(1− E0 cosΓ0), the velocity of the cm relative to the tertiary is

V0 = vcm,0 − v3 = (V0x, V0y, V0z). (5.21)

e effective kick velocity vsys makes an angle Φ with the pre-SN relative ve-
locity of the cm with respect to the tertiary star V0. After the SN the separation
distance between the cm and the tertiary star is

R = R0 +∆R,

=
A0(1− E2

0)

1 + E0 cosΘ0

(
cos i0 sinα0, (µ− µ0)

a0(1− e20)

1 + e0 cos θ0

×1 + E0 cosΘ0

A0(1− E2
0)

− cos i0 cosα0, sin i0
)
, (5.22)

the velocity of the cm relative to the tertiary star is

V = V0 + vsys

= (V0x + vsys,x, V0y + vsys,y, V0z + vsys,z), (5.23)

the cm mass ismcm = M0−∆m and the total triple mass isMt = Mt,0−∆m.
e inclination of the outer binary orbital plane with respect to the inner binary
orbital plane is given by:

sin i = |R0|
|R|

sin i0. (5.24)
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e angle of the outer binary separation distance projected onto the xz-plane
relative to the inner binary separation distance is given by:

sinα =
|R0|
|R|

cos i0
cos i sinα0. (5.25)

Applying the relevant equations above and equations (5.1) and (5.2) to our
triple system, we obtain equations relating the post-SN semi-major axis,A, and
eccentricity, E, to both the pre- and post-SN orbital parameters and velocities.
Using Vc,0 = V0|R0=A0 = (GMt,0/A0)

1/2 as the pre-SN relative velocity
when R0 = A0, and using ρ = (R0 −R)/(R0R), we obtain

A

A0
=

(
1− ∆m

Mt,0

)(
1− 2A0

R

∆m

Mt,0
− 2

V0

Vc,0

vsys
Vc,0

cosΦ

−
v2sys
V 2
c,0

+ 2A0ρ
)−1

, (5.26)

E2 = 1− (1− E2
0)

Mt,0

(Mt,0 −∆m)

(2A0

R
+

Mt,0

Mt,0 −∆m

×
(
1− 2A0

R0
−

v2sys
V 2
c,0

− 2
V0

Vc,0

vsys
Vc,0

cosΦ
))

.

(5.27)

With the pre-SN mass ratio ν0 = m3/Mt,0, the pre-SN velocities of the cm
and the tertiary in the CM reference frame are

vcm,0 = ν0

(
V0x, V0y, V0z

)
(5.28)

v3 = (ν0 − 1)
(
V0x, V0y, V0z

)
. (5.29)

We calculate the instantaneous velocity of the cm after the SN (as before, be-
cause of the assumption of an instantaneous SN, the velocity of the tertiary
after the SN remains unchanged):

vcm = ν0

(
V0x +

vsys,x
ν0

, V0y +
vsys,y
ν0

, V0z +
vsys,z
ν0

)
. (5.30)

Using the post-SN mass ratio ν = m3/Mt, the systemic velocity of the outer
binary (and therefore of the triple) is

Vsys = (1− ν)vcm + νv3

= (1− ν)
(ν0 − ν

1− ν
V0x + (µ0 − µ)v0x + (1− µ)vkx,

ν0 − ν

1− ν
V0y + (µ0 − µ)v0y + (1− µ)vky,

ν0 − ν

1− ν
V0z + (1− µ)vkz

)
. (5.31)
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Summarizing, one can consider a hierarchical triple system as a effective bi-
nary system composed of an effective star (i.e. the inner binary center of mass
(cm)) and the tertiary. e effective star undergoes an effective asymmetric SN
resulting in three effects: 1) sudden mass loss ∆m, 2) an instantaneous trans-
lation ∆R, and 3) a random kick velocity vsys. e calculation of the post-SN
parameters and velocities of a hierarchical triple system is now reduced to the
prescription for a SN in a binary as presented in section 5.2.1. Note that the
mass loss does not occur from the position of the effective star, but from the
position of the primary star; a clear distinction from a physical binary system.
However, from what position the mass loss occurs is not important when an
instantaneous SN is considered. When the effect of the shell impact on the
companion star(s) is considered, this off-center mass loss must be taken into
account. In addition, if it was not the primary which underwent the SN, but
for example the tertiary, the computation would be done by reducing the inner
binary to an effective star, as shown in this section. One would again have a
binary configuration to calculate the effect of the SN; in such a system there
is no off-center mass loss. In section 5.2.4 we show how one can reduce any
hierarchical multiple star system to an effective binary in a recursive way using
the effective binary method and in § 5.2.4 we do the computation of the effect
of a SN on a binary-binary system.

Dissociating hierarchical triple systems

For the triple system, dissociation can occur in two ways: the inner binary can
dissociate (a < 0 and e > 1 or a → ∞ and e = 1) (see section 5.2.1) and the
outer binary can dissociate (A < 0 and E > 1 or A → ∞ and E = 1), i.e. the
inner binary and the tertiary become unbound. e inner binary dissociation
scenario generally results in complete dissociation of the system. However, hy-
pothetical scenarios exist in which one of the inner binary components is ejected
towards the tertiary star to either collapse with it or to form a binary by gravi-
tational or tidal capture. Nevertheless, these scenarios have a small probability
since the ejection conditions (e.g. the solid angle in which that particular inner
binary component has to be ejected in) and the capture conditions are extremely
specific. From equation 5.26 we see that for the inner binary to dissociate from
the tertiary, the angle Φ has to satisfy

cosΦ ⩾
(
1− 2A0

R

∆m

Mt,0
−

v2sys
V 2
c,0

+ 2A0ρ
)(

2
V0

Vc,0

vsys
Vc,0

)−1
.

(5.32)
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e probability of this type of dissociation is

P outer
diss =

1

2

(
1−

(
1− 2A0

R

∆m

Mt,0
−

v2sys
V 2
c,0

+ 2A0ρ
)

×
(
2
V0

Vc,0

vsys
Vc,0

)−1)
. (5.33)

In the case of the dissociation of the outer binary, using the following short
hand relations

M̃ =
Mt

Mt,0

J =
V 2
0x

V 2
0

− 2M̃
A0

2A0 −R0

R0

R
+

v2sys
V 2
0

+
2V0xvsys,x

V 2
0

K = 1 +
J

M̃

2A0 −R0

A0

R

R0
−

v2sys,y

M̃V 2
0

2A0 −R

A0

R

R0

L =
1

ν

( √
J

M̃V0

vsys,y
2A0 −R0

A0

R

R0

− J

M̃

2A0 −R0

A0

R

R0
− 1

)
N =

1

ν

(
1 +

J

M̃

2A0 −R0

A0

R

R0
(K + 1)

)
the runaway velocities of the inner binary system and the tertiary are (following
and generalizing Tauris and Takens (1998)):

vcm,diss =
(
vsys,x

( 1

L
+ 1

)
+

( 1

L
+ ν0

)
V0x, vsys,y

(
1− 1

N

)
+ν0V0y +

K
√
J

N
V0, vsys,z

( 1

L
+ 1

))
(5.34)

v3,diss =
(
−Mvsys,x

m3L
−

( M

m3L
+ 1− ν0

)
V0x, (ν0 − 1)V0y

+
Mvsys,y
m3N

− MK
√
J

m3N
V0,−

Mvsys,z
m3L

)
. (5.35)

Note that these equations are more general than the ones in section 5.2.1, be-
cause we cannot assume R = R0 in the triple case.

5.2.3 An example of the effect of a supernova in a hierar-
chical triple

For two simple sets of initial conditions we investigated the effect of mass loss,
∆m, and kick velocity, vk, on the survivability of a triple system.We distinguish
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between four different post-SN scenarios: (1) the triple survives as a whole
(e < 1 and E < 1) with new orbital parameters, (2) the inner binary survives
and the third star escapes (e < 1 and E > 1), (3) the inner binary dissociates
and the outer binary survives (e > 1 and E < 1) and (4) the triple completely
dissociates (e > 1 andE > 1).e third scenario is a rather special case and can
only be of temporary nature: in this scenario, even though the inner binary has
just dissociated, the third star remains bound to the inner binary center of mass.
is is a temporal solution which eventually will lead to the full dissociation of
the triple, except in the extreme case in which the tertiary star captures one of
the ejected inner stars to form a new binary system.

For each set of initial conditions we used a hierarchical triple system with
primary, secondary and tertiary stars of masses m1,0, m2, m3 = 3, 2, 1 M⊙
respectively and inner and outer binary semi-major axes a0, A0 = 10, 50 R⊙
respectively, and we varied the kick velocity direction v̂k. For the two different
sets of initial conditions we determine for what combinations of ∆m and vk
which post-SN scenario occurs and we show our results in Figure 5.3; the used
initial conditions are specified below the respective figures.

In Figure 5.3a. we used a circular inner and outer orbit, not inclined with
respect to each other, with all stars on one line and the kick velocity in the same
direction as the pre-SN inner binary relative velocity. We see that for zero kick
velocity, the inner binary dissociates for a mass loss ratio of ∆m/M0 = 0.5,
which is consistent with earlier work (e.g. Hills 1983). For zero mass loss, we
see that the inner binary dissociates for a kick velocity of vk ∼ 128 km/s -
this velocity is exactly the difference between the inner binary escape veloc-
ity (vesc =

√
2GM0/a0 ∼ 437 km/s) and pre-SN relative velocity (v0 =√

GM0/a0 ∼ 309 km/s) - but that the third star escapes for a slightly lower
value of the kick velocity. is is because the inner binary systemic velocity
(which is the effective outer orbit kick; see Section 5.2.2) plus the pre-SN outer
orbit relative velocity already exceed the outer orbit escape velocity. We further-
more see that the total triple survival scenario allows lower kick velocities for
higher mass losses. Above a kick velocity of vk ∼ 128 km/s the inner binary
always dissociates, irrespective of the mass loss, (eventually) leading to total
dissociation.

In Figure 5.3b. we keep the same configuration as described for Figure 5.3a.,
but with a kick velocity in the opposite direction with respect to the orbital
velocity of the exploding star before the supernova. e triple can now lose
more mass and receive a higher velocity kick while stil surviving. e ability to
sustain greater kick velocities is explained by the fact that, depending on the
mass loss, the kick velocity now has to exceed a fraction of the sum of v0 and
vk (for zero mass loss v0+vk∼ 746 km/s) due to the opposing directions of the
two velocities. We also see that total triple survival can occur beyond a mass
loss ratio of 0.5, because the kick velocity can oppose the dissociating effect
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of the mass loss (as mentioned in Hills 1983). Bare in mind that while the
∆m/M0 = 0 case is non-physical we include it for the completeness” sake.

In Figure 5.4 we show how the post-SN systemic velocity of the triple de-
pends on the mass loss ∆m for a hierarchical triple system with primary, sec-
ondary and tertiary stars with masses (m1,0, m2, m3) = (3, 2, 1) M⊙, inner and
outer binary semi-major axes (a0, A0) = (10, 50) R⊙ and the kick velocity in
the direction of the pre-SN inner orbit relative velocity. We plot our results for
the case that the SN went off at the inner orbit apastron (θ0 = 180 degrees) or
at the inner orbit periastron (θ0 = 0 degrees) for a symmetric SN (i.e. vk = 0
km/s) and a SN with a kick vk ∼ 31 km/s, in the cm reference frame (i.e. with
the cm at rest at t = 0). In Figure 5.4a. we see that for a symmetric supernova,
the systemic velocity of the inner binary increases with the amount of mass loss,
which is an intuitive result. We see that even with zero mass loss the triple has
a systemic velocity, namely the velocity it started with in this reference frame
(Vsys ∼ 17.5 km/s). We furthermore see that the increase of the triple sys-
temic velocity happens more steeply for these cases where the SN goes off at
periastron - with the steepest curve for the highest inner binary eccentricity -
than when the supernova goes off at apastron - with the steepest curve is for
lowest eccentricity. For an asymmetric supernova with kick vk ∼ 31 km/s, see
Figure 5.4b., we observe similar behaviour, but with the difference of the zero
mass loss case: in this case the triple system has a lower velocity than it started
with (Vsys ∼ 2.5 km/s), which is due to the kick. is result is dependent on
the direction of the kick.
e pre-SN triple systemic velocity is dependent on both the inner binary and
the outer binary. Its dependence on the inner binary is via the masses m1,0 and
m2 of the primary and secondary respectively and the inner binary orbital pa-
rameters which fully constrain the relative velocity of these stars (see equation
(5.5)). Its dependence on the outer binary is via the mass m3 of the tertiary
and the outer orbit orbital parameters which fully constrain the outer binary
relative velocity (see equation (5.21)). e post-SN triple systemic velocity is
merely the sum of the pre-SN systemic velocity and its change, which is only
due to the inner binary through the mass loss ∆m and kick velocity vk.

5.2.4 Hierarchical systems of multiplicity > 3

ere exist two kind of hierarchical multiple star systems with more than three
stars:

1. systems that have n stars and hierarchy n − 1, i.e. multiple star systems
with its stars hierarchically ordered in series (hereafter serial systems).
Examples of such systems include quadruples with hierarchy 3, but also
binaries and triples are serial systems.
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Figure 5.3: The plots above show the survivability of the hierarchical triple system for
varying mass loss ∆m and kick velocity vk. The systems have masses of m1,0, m2, m3 =
3, 2, 1 M⊙ respectively and inner and outer binary semi-major axes a0, A0 = 10, 50 R⊙
respectively. There are four possible post-SN scenarios: (1) the whole triple survives, (2)
the inner binary survives but the third star escapes, (3) the inner binary dissociates and
the outer binary survives, or (4) the triple completely dissociates. The areas in the plots
are labeled according to their respective post-SN scenario.
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Figure 5.4: The dependence of the post-SN systemic velocity of the triple as a function of
mass loss ∆m. We present the results for the case in which the SN occurs at the moment
that the exploding star is at the apastron of the inner binary (θ0 = 0, dashes) and apastron
(θ0 = 180 degrees, solid curves) for a range of pre-SN inner binary eccentricities. We show
this dependency for two cases: vk = 0 km/s in the left panel, and for a kick of vk ∼ 31
in the right panel km/s.
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2. systems that have n stars and hierarchy n − 2 or below, i.e. multiples
composed of serial systems which are hierarchically ordered in parallel
(hereafter parallel systems). An example of such system is a quadruple
with hierarchy 2 (i.e. a binary-binary system).

Serial systems

e effect of a SN on a serial system is calculated by applying the effective
binary method (see section 5.2.2) by recursively replacing the inner binary by
an effective star at the center of mass of that binary, until the total system is
reduced to a single effective binary. When considering a serial system of n stars
each with mass, position and velocity given by (m1,0,r1,v1,0), (m2,r2,v2), ... ,
(mn,rn,vn) respectively, in which the primary star undergoes a SN, one starts
by reducing the inner binary to an effective star, as was done in section 5.2.2.
e inner binary consists of the primary and secondary star at positions r1 and r2
respectively. is binary is reduced to an effective star of mass mcm,0 = m1,0+
m2 at position rcm,0 given by equation (5.17) and having velocity vcm,0 given by
equation (5.18). Due to the SN of the primary this effective star experiences a
mass loss∆m, an instantaneous translation∆R given by equation (5.19), and a
random kick velocity vsys given by equation (5.12). After applying these effects
on this effective binary, one can calculate the post-SN orbital parameters and
velocities and the systemic velocity v(2)sys = Vsys of this effective binary, given by
equation (5.31), using the prescription for a SN in a binary.3 e total system
is now reduced to a serial system of n− 1 objects (real and effective stars).

Subsequently, one reduces the current inner binary - consisting of the ef-
fective and tertiary star at positions rcm,0 and r3 respectively - to an effective
star of mass m(2)

cm,0 = mcm,0 +m3, at position

r(2)cm,0 =
mcm,0rcm,0 +m3r3

mcm,0 +m3
(5.36)

with a velocity

v(2)cm,0 =
mcm,0vcm,0 +m3v3

mcm,0 +m3
. (5.37)

Due to the SN of the primary star, this effective star also experiences a mass
loss ∆m, an instantaneous translation ∆R(2) - this time, the translation vector
has non-zero y- and z-components - and a random kick velocity v(2)sys . After
applying these effects on this effective binary, one can calculate the post-SN
orbital parameters and velocities and the systemic velocity v(3)sys of this effective

3e number between parentheses denotes the hierarchy up to which the system has been
reduced to a effective star.
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binary using the prescription for a SN in a binary. e total system is now
reduced to a serial system of n− 2 objects (real and effective stars).

is procedure is carried on until the entire multiple is reduced to a single
effective binary, consisting of the nth star at position rn and a effective star of
mass m(n−2)

cm,0 = m
(n−3)
cm,0 +mn−1 at position

r(n−2)
cm,0 =

m
(n−3)
cm,0 r(n−3)

cm,0 +mn−1rn−1

m
(n−3)
cm,0 +mn−1

(5.38)

with a velocity

v(n−2)
cm,0 =

m
(n−3)
cm,0 v(n−3)

cm,0 +mn−1vn−1

m
(n−3)
cm,0 +mn−1

. (5.39)

is effective star also experiences mass loss ∆m, an instantaneous translation
∆R(n−2) and a random kick velocity v(n−2)

sys . After applying these effects on
this (final) effective binary, one can calculate the post-SN orbital parameters
and velocities and the systemic velocity v(n−1)

sys for this effective binary (and
therefore of the total system) using the binary method.

When it is not the primary star which undergoes a SN, but the mth star
in the hierarchy, the procedure is carried out by first reducing the inner serial
system of m − 1 stars to an effective star at its center of mass. One can then
apply the above explained method, as there is no computational difference in
whether the primary or the secondary of a(n effective) binary undergoes the
SN.

Parallel systems

e effect of a SN on a parallel system is calculated by reducing each parallel
branch (which itself is a serial system) to an effective star until an effective
serial configuration is reached; after this, one can use the method explained in
the previous section. We consider a parallel system of i parallel branches, each
consisting of an arbitrary number ni of stars with mass, position and velocity
given by (m1,r1,v1), ... , (mni ,rni ,vni) respectively, in which themth star - which
is part of branch j - undergoes a SN. One starts by reducing all i− 1 branches
̸= j to effective stars. One then calculates the effect of the SN on branch j (i.e.
systemic velocity and mass loss) using the method described in section 5.2.4.
e total system is now reduced to an effective serial system of i effective stars in
which the jth effective star undergoes an effective SNwith the systemic velocity
of branch j as the kick velocity. e effect of this effective SN on the total
system, can be calculated by applying the method described in section 5.2.4 to
this effective serial system. As an example we will now demonstrate the effect
of a SN on a binary-binary system.
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An example of the effect of a supernova in binary-binary system

We consider a hierarchical binary-binary system of stars with mass, position
and velocity given by (m1,0,r1,v1,0), (m2,r2,v2), (m3,r3,v3) and (m4,r4,v4) re-
spectively, in which the primary star undergoes a SN. e binary consisting of
the primary and the secondary star (primary binary) has the configuration and
the parameters as in section 5.2.1 and has a center of mass (cm1, i.e. effective
star 1) of massmcm1,0 = m1,0+m2 = M0 at position given by equation (5.17)
with a velocity vcm1,0 given by equation (5.18). e secondary binary consists
of the tertiary and quaternary star and its center of mass (cm2, i.e. effective star
2) has a mass mcm2 = m3 +m4 = M2, is at position

rcm2 = (1− κ)r3 + κr4

and has velocity

vcm2 = (1− κ)v3 + κv4,

before the SN, where κ = m4
M2

. e cm1 and cm2 constitute an effective bi-
nary defined by semi-major axis, A0, eccentricity, E0, and true anomaly, Θ0.
e separation distance is denoted by R0. Before the SN the effective binary
orbital plane has inclination i0 with respect to the primary binary orbital plane
and the separation distance of the effective binary projected onto the xy-plane
makes an angle α0 with the separation distance of the primary binary. We as-
sume an instantaneous SN4. In the effective SN the cm1 experiences a mass
loss ∆m, an instantaneous translation ∆R along the x-axis given by equation
(5.19) and a random kick velocity vsys given by equation (5.12). e orbital pa-
rameters change as a result of the SN: the primary binary parameters change
according to the description in section 5.2.1 and the effective binary orbital pa-
rameters change to semi-major axis A, eccentricity E and true anomaly Θ; the
secondary binary orbital parameters do not change when SN-shell impact is not
taken into account. Before the SN the binary-binary system has a total mass
Mbb,0 = mcm1,0 +mcm2, we use the cm1 coordinate system to pin down the
primary binary and add to this coordinate system the tertiary and quaternary
at a position such that R0 ≫ r0, and we choose a reference frame in which the
center of mass of the total binary-binary system (CMbb) is at rest (the CMbb

reference frame) and in which the cm1 is at the origin at t = 0. e separation
distance between the cm1 and the cm2, R0, is given by equation (5.20) and the
velocity of the cm1 relative to the cm2 is

V0 = vcm1,0 − vcm2 = (V0x, V0y, V0z) (5.40)
4See section 5.2.1 and note that these statements about the inner companion (secondary)

star also hold for the outer companion (tertiary and quaternary) stars.
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prior to the SN. e effective kick velocity vsys makes an angle Φ with the pre-
SN relative velocity V0. After the SN the separation distance between the cm1

and the cm2 is R given by equation (5.22) and the velocity of the cm1 relative to
the cm2 is V given by equation (5.23), the cm1 mass mcm1 = mcm1,0−∆m =
M and total binary-binary mass Mbb = mcm1 +mcm2 = M +M2. Applying
the relations above and equations (5.1) and (5.2) to our binary-binary system,
we obtain relations for the post-SN semi-major axis A and eccentricity E in
terms of both the pre- and post-SN orbital parameters and velocities given
by equations (5.26) and (5.27) respectively with Mt,0 replaced by Mbb,0. To
compute the systemic velocity due to the SN, we express the pre-SN velocities
of the cm1 and the cm2 in the CMbb reference frame. Using the pre-SN mass
ratio λ0 =

mcm2
Mbb,0

, the pre-SN velocities are given by

vcm1,0 = λ0

(
V0x, V0y, V0z

)
(5.41)

vcm2 = (λ0 − 1)
(
V0x, V0y, V0z

)
. (5.42)

We calculate the instantaneous velocity of the cm1 after the SN (due to the as-
sumption of an instantaneous SN, the velocity of the cm2 after the SN remains
unchanged):

vcm1 = λ0

(
V0x +

vsys,x
λ0

, V0y +
vsys,y
λ0

, V0z +
vsys,z
λ0

)
(5.43)

With the post-SN mass ratio λ = mcm2
Mbb

, the systemic velocity of the effective
binary (and therefore of the binary-binary system) is

Vsys = (1− λ)vcm1 + λvcm2

= (1− λ)
(λ0 − λ

1− λ
V0x + (µ0 − µ)v0x + (1− µ)vkx,

λ0 − λ

1− λ
V0y + (µ0 − µ)v0y + (1− µ)vky,

λ0 − λ

1− λ
V0z + (1− µ)vkz

)
. (5.44)

Note that because the branch harboring the SN-progenitor (SN branch) is a bi-
nary, this calculation the SN-effect on the binary-binary system is almost iden-
tical to calculation of the SN-effect on a hierarchical triple. e computations
become more interesting for systems with a SN branch of higher multiplicity.

5.3 Application: Formation of J1903+0327
PSR J1903+0327 was observed by Champion et al. (2008) who determined it
to be a millisecond pulsar (MSP). is MSP is observed to have a 1 M⊙ main
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sequence companion with a highly eccentric and distant orbit (e≃ 0.44, orbital
period ≃ 95.2 days). ese properties are atypical for MSPs because MSPs are
expected to be spun-up via mass transfer (Bhattacharya and van den Heuvel
1991), which in turn widens and circularizes the orbit, while its companion
evolves through a giant phase. Phinney (1992), for example, suggest an eccen-
tricity e < 10−3 is typical for MSP binaries. e exception to this has been
MSPs in globular clusters which have interactions with other objects that may
perturb the orbit of the binary. However, Freire et al. (2011) find it to be un-
likely that this MSP system has its origin in an exchange interaction in such a
dense stellar environment.

It has been suggested that J1903+0327 maybe the result of a hierarchical
triple (Champion et al. 2008, Portegies Zwart et al. 2011 and Bejger et al. 2011)
where the inner companion has been lost after spinning-up the MSP, leaving
only the MSP and the former tertiary to be observed. Should J1903+0327 be
the result of such a system the methods in the previous sections provide a strong
beginning to investigate how such a system might evolve.

5.3.1 Initial conditions

We generate sets of 105 initial conditions, as described below, with each set
constituting a stable triple system, and then simulated the effect of an instan-
taneous SN occurring at the primary star. e model we follow (many of our
initial conditions are drawn from Portegies Zwart et al. (2011)) consist of a
primary, secondary and tertiary star with zero age masses of 10 M⊙, 1 M⊙ and
0.9 M⊙ respectively. e initial conditions are generated by selecting the semi-
major axis, A0, eccentricity, E0, and the orbital inclination, i, for the tertiary.
A0 takes values on the range [200, 10 000]R⊙ from a flat distribution, E0 is
chosen on the range [0, 1) from a distribution that is flat in log space, and i0
is chosen on the range [0, π] with a sinusoidal distribution. Combining these
values with the zero age masses of the stars as well as a pre-set value for the ini-
tial semi-major axis of the inner binary, a0 = 200R⊙ we then test for stability
of the system using:

A0(1− E0)

a0
> 3

(
1 +

m3

M0

)1/3(7
4
+

1

2
cos i0 − cos2 i0

)1/3

× (1− E0)
−1/6 (5.45)

(Zhuchkov et al. 2010). If the system is stable with this set of parameters, we
choose the remaining parameters, namely the angle α0 described in the previ-
ous sections, the direction and magnitude of the kick. Because we have assured
that the system is dynamically stable before starting our simulations our as-
sumption of a hierarchical system is guaranteed. We observe that due to the
SN kick, systems with very high inclination are preferentially removed or their
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Figure 5.5: The fraction of surviving and stable system (thin red and thick black (colors
online only) lines respectively) as a function of the kick velocity. The lines in each set
correspond to different semi-major axis, 50, 30, 20, and 10 R⊙ (circle, cross, diamond, and
square respectively). All curves are normalized to the total number of surviving systems
with a semi-major axis of 50 R⊙.

inclination is reduced thus as a result we do not include the effects of Kozai
iterations.

5.3.2 Simulations

e inner binary undergoes a common envelope (CE) phase, circularizing the
orbit, reducing the inner semi-major axis to a value between 5 R⊙ and 60 R⊙,
and reducing the mass of the primary to 2.7M⊙. e effect of these changes on
the stability of the system can immediately be seen in equation (5.45). en,
due to the SN, the primary undergoes a mass loss of 1.3 M⊙ and receives a
corresponding kick. e velocity of the kick is fixed between 5 and 160 km/s
for each set of simulations and the kick direction is randomly chosen such that
for all simulations the direction is isotropic. We then analyze the survivability
and stability of each system. A system survives the SN and resulting kick if it
remains bound, and it is determined to be stable if, while remaining bound, the
system also satisfies the stability criterion in equation (5.45).

We ran Monte Carlo simulations for four different inner binary semi-major
axes (10, 20, 30, and 50R⊙). For each semi-major axis value we run 25 simula-
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Figure 5.6: The fraction of surviving and stable systems (upper and lower lines respec-
tively) with respect to the inner semi-major axis. A constant kick velocity of 20 km/s is
used.

tions (each of the 25 simulations consists of 105 sets of initial conditions) each
with a constraint kick velocity (between 0 and 130 km/s). In Figure 5.5 we plot
the kick velocity versus the fraction of surviving and stable systems. For each
pair of curves the thin red upper curve corresponds to the survivability fraction
and the thick black lower curve to the fraction that survives and remains sta-
ble. Curves with same kick velocity have the same point-symbols. Each point
represents the fraction of surviving or stable systems normalized to the total
number of surviving systems with a semi-major axis of 50R⊙. Increasing the
semi-major axis from 10 to 30 R⊙ strongly increases the overall probability of
a system to survive and remain stable. However, with a kick velocity of 45 km/s
and higher the probability of a system remaining stable is nearly the same when
the semi-major axis is ⩾ 20R⊙. Figure 5.5 shows the effect of the Blaauw &
Boersma recoil (Blaauw 1961 & Boersma (1961)) on the system when the SN
kick is small; as the SN kick velocity approaches the Blaauw & Boersma recoil
velocity the stability increases due to the kick and recoil off-setting one another,
in part or in full. As the SN kick velocity increases it begins to overwhelm the
Blaauw & Boersma effect.

In Figure 5.6 we show the effect the inner semi-major axis has on surviv-
ability and stability (the upper and lower lines respectively) using a constant
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Figure 5.7: The number of occurrences for which the system becomes unstable due to
mass transfer at a given mass of the primary. The curves corresponds to Facc values of
0.3, 0.4, 0.5, 0.6, and 0.9 as shown in the key. The peak value and FWHM for each curve
in this figure, as well as similar curves for other values of Facc, are plotted in Figure 5.8.

kick velocity of 20 km/s. Again each data point represents the fraction of sys-
tems that survive or survive and in addition remains stable out of a set of 105
initial conditions. Here we see the significant role of the inner semi-major axis
on the survivability of the system. If we note for a particular kick velocity which
value of a0 the stability fraction begins to level, we can see a corresponds to the
merging of the stability curves in Figure 5.5. For the case of a 20 km/s SN kick
velocity, as in Figure 5.6, we see that any value of a0 greater than about 30 R⊙
will have similar stability fractions while systems with lower values of a0 should
have a lower stability fraction as we see in Figure 5.5.

Next, we chose all of the systems that remain stable after the SN and subject
them to a mass transfer phase. Here we iteratively remove one one-hundredth
of the mass of the secondary and transfer a fraction of it to the primary, which
after the SN would have formed a neutron star (NS). Following the work of
Pols and Marinus (1994) we find:

af = ai

[(m1,f

m1i

)(1/(1−χ))m2,f

m2i

]−2
×

(Mi

Mf

)
(5.46)

where af is the new semi-major axis, ai is the semi-major axis before the mass
transfer, m1,i and m2,i are the masses of the primary and secondary before the
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Figure 5.8: The final mass of primaries with respect to the fraction of accreted mass.
The dashed horizontal line is placed at the observed mass of J1903+0327. The points
represent the peak value of curves which plot the number of times a system becomes
unstable while at a given mass of the primary (like those in Figure 5.7); the upper and
lower bars represent the FWHM of the curves. The values that are colored (online) and
that have different line types correspond to the curves in Figure 5.7 (e.g. the blue, dot-
dash line at Facc=0.9 is obtained from the right most peaked curve in Figure 5.7, which
is also a blue, dot-dash line).

mass transfer and m1,f and m2,f are the masses of the primary and secondary
after the mass transfer,Mi andMf are the total masses of the binary before and
after the mass transfer, and finally χ is the ratio of the change in mass of the
system to the change in mass of the donor (i.e. the secondary). If we define the
fraction of mass accreted, Facc, as the fraction of mass lost from the secondary
which is accreted onto the primary we find that the 1/(1 − χ) term simply
becomes 1/Facc. After each iterative mass transfer, and the resulting change
in the semi-major axis, we test the triple for stability using equation (5.45).
When the system becomes dynamically unstable we stop simulating as the as-
sumption of a hierarchical system has broken down. We record the mass of the
primary when the system becomes dynamically unstable and plot the mass in
Figure 5.7 versus the number of times systems becomes unstable at that mass.
For this plot we used Facc values of 0.3, 0.4, 0.5, 0.6 and 0.9, which correspond
to the lines which peak from the left to right respectively, and a constant kick
velocity. We see that the peak value for each Facc shifts to a larger primary
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mass as Facc increases. is relation is expected since as Facc becomes larger
more of the mass lost from the secondary is accreted onto the primary. So for
the case of Facc = 0.3 only 30% of the mass lost from the secondary could
ever accrete onto the primary thereby reducing the maximum possible mass of
the primary. If we assumed that all of the mass of the secondary is lost (an un-
physical case since the mass transfer would end before this could happen, but
this provides an extreme upper limit) then while the secondary would have lost
1M⊙ the primary would have only accreted 0.3M⊙ resulting in a maximum
primary mass of 1.7 M⊙. If we were to assume that mass transfer would stop
when the secondary decreased to a mass of 0.3M⊙ then the secondary would
have lost 0.7M⊙ and only 0.21M⊙ (or 30% of 0.7M⊙) would have been ac-
creted by the primary resulting in a mass of 1.61M⊙. We have examined 21
curves like those in Figure 5.7, we measured and plotted their peak value and
the full-width-half-maximum (FWHM) in Figure 5.8. e error bars denote
the FWHM of the curves, the plotted point is the peak value for each curve,
and the mass of J1903+0327 is shown as a dashed line. Examination of Fig-
ure 5.8 shows that given the observed mass and the assumptions we used in
preparing the simulated systems, J1903+0327’s progenitor system would have
most likely had an Facc value between between 0.35 and 0.5, with the peak
value of 0.4 most closly maching the observed mass.

It should be noted however, not all of the barionic mass transfered results
in an equivalent increase in gravitational mass of the primary since Maccrete =
∆Mgrav +∆Ebinding/c

2 (Bagchi 2011), where Maccrete is the mass accreted
from the secondary,∆Mgrav is the change in gravitational mass of the primary,
and∆Ebinding is the binding energy of the system. We find that for the masses
being transfered in our simulations the effect is of using Maccrete = ∆Mgrav

is less than the our uncertanty in the final results.
Finally, we preform the same analysis that produced Figure 5.7 but use an

initial primary mass of 1.2, 1.3, 1.4 (as used in all of the previous simulations),
1.5, and 1.6M⊙. ese simulations were preformed for eight inner semi-major
axes (10, 20, 30, 40, 50, 60, 70, and 100 R⊙) at the start of mass transfer. e
Facc value with the peak number of occurrences closest to the observed mass
of J1903+0327 (1.667 M⊙) was recorded, as was the number of occurrences at
that peak; these values were plotted in Figure 5.9. Upon examining Figure 5.9
we find that as the initial mass of the primary increases the most likely Facc

value and its domain decrease. To understand these results we recall that as the
initial mass of the primary increases the amount of mass needed to reach the
observed mass of J1903+0327 is decreased. So, for example, if the initial mass
of the progenitor of J1903+0327’s primary (before it began to accrete material
from the secondary) was 1.6M⊙ it would only need to accrete 0.067M⊙ before
the system reached the observed mass. A very small Facc value can result in
the transfer of such a small amount of material allowing the Facc to stay low;
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Figure 5.9: The number of systems per millon simulations with a final primary mass of
1.667 M⊙ (the observed mass of J1903+0327) as a function of the fraction of accreted
mass, for different initial primary masses (shown in the key).

with a lager Facc value the system will often reach a final primary mass greater
than 1.667 M⊙ thus limiting the domain. Whereas if the initial primary mass
was 1.2 M⊙, an Facc value of 0.1 would never allow for enough mass to be
transfered, but there are a large range of Facc values that can allow for that
amount of mass transfer that would not quickly overshoot the observed mass.
is assumes, as we have, that the mass transfer is stable as long as the triple is
dynamically stable. We find that for an initial mass of the primary of 1.4 M⊙,
the value used for all the other simulations, the peak Facc value is not sensitive
to the semi-major axis at the beginning of the mass transfer; the Facc value
ranges between 0.35 and 0.45 which lies within our expected range of 0.35 to
0.5 found above from Figure 5.8.

5.4 Conclusion

We have examined the effect of an asymmetric supernova (SN) on a hierarchi-
cal multiple star system and considered how it can be modeled by applying the
effective binary method. is is done by recursively replacing the inner binary
by an effective star at the center of mass of that binary. e effective star expe-
riences an effective SN with the effects of sudden mass loss, an instantaneous
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translation and an effective kick velocity, i.e. the systemic velocity of the inner
binary. We have coded the equations in this paper in a small python script.

We point out that the effective SN is different from a physical SN which
has the mass loss occur from the position of the star undergoing the physical
SN. e off-center mass loss in an effective SN becomes important only if the
shell impact on the companion(s) is considered, and otherwise causes no differ-
ence between a real and effective SN calculation. Furthermore, we calculated
the runaway velocities for dissociating binaries and effective binaries. We sub-
sequently demonstrated how calculating the effect of a SN on a multiple can be
generalized to multiples in which a star other than the primary is undergoing
the SN.

We used this method to examine the case for J1903+0327 forming from
a hierarchical triple. We assume initial masses of 10, 1.0, and 0.9 M⊙ for the
primary, secondary, and tertiary respectively, as well as an inner semi-major axis
of 200R⊙. We find that if J1903+0367 was to form through such a mechanism
it would be most likely to have a very low SN kick velocity so that it would
remain stable after the SN, and a large inner semi-major axis after the CE
phase to increase the likelihood that the triple would become unstable once the
NS/MSP reached a mass of 1.667 M⊙ (Freire et al. 2011). We also find that,
given our assumptions, the transfer efficiency, Facc, for J1903+0327 would have
likely been between 0.35 and 0.5.
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e fundamental thing in astronomy is the star. Every study in astronomy is
based on, in, about, around, or somehow related to stars and their physical
processes. is thesis is no different. In particular, I focus on different forms of
collapse related to stars and groups of stars.

Most stars are born in groups, and some of these groups can be amazingly
massive with many thousands or more stars. As stars form in a group, or cluster,
the cluster itself may start to contract, or collapse, and this collapse can lead to
interesting systems. As the cluster collapses all the stars begin moving faster as
well as ever closer together, this can lead to–among other things–collisions, the
formation of binaries or larger sets, and the ejection of stars from the system as
they are slingshot outward.

When stars reach the end of their life, having burned all of their nuclear fuel
one of only a few things can happen to them. If the star is less than about 8-10
times the mass of our Sun, they will push off most of their material through
strong winds and periodic pulsations. If it is more massive it will lose most
of its material in a collapse followed by an awe-inspiring explosion called a
supernova. If it was a very massive star, more than about 20 times the mass
of the Sun, than it might collapse into a black hole after the supernova. Black
holes like these are called stellar mass black holes1, because they are expected
to have masses between a few times the mass of our Sun to tens of times the
mass of the Sun.

Chapters 2 and 3 of this thesis examine how stars behave when they are
born in clusters, while the other two chapters, namely 5 and 4, examine what
large stars do when they die. In the former I examine what happens to clusters
as the stars are just being born; are the clusters likely to contract as the stars are

1Other classes of black holes exist: supermassive black holes are more than about one million
times the mass of the Sun and are observed at the center of galaxies. If the mass of a black hole
is between about one hundred and one million times the mass of the Sun it would be called an
intermediate mass black hole–though no such objects have been definitively identified, currently
HLX-1, as discussed in Chapter 4, is the leading candidate for such an object.
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formed, and if they are likely to contract, then by howmuch. I also examine how
stars arrange themselves within these clusters; often young clusters are seen to
have the most massive stars near the center of the cluster and we have identified
the most likely way that happens. In the latter case I make an estimate of the
number of intermediate mass black holes that we should expect to be within
about 325 million light years from Earth. Finally, in Chapter 5 I show what
can happen in a triple star system when one of the stars goes supernova.

All of these studies have been done not primarily by looking into the night
sky and observing what happens, but rather by using a computer to simulate
what stars will do under the influence of gravity and other physical processes.
But why would we use computers and simulations when there are so many stars
at which we could point our telescopes?

6.1 The Role of Simulations

Consider, for a moment, that aliens observed Earth and, with their sophisti-
cated technology, they were able to take a photograph containing the image of
every living human at one instance in time. From this photograph the aliens
would likely work out that most humans are between the ages of 20 and 60
(Earth) years old. e aliens may discover from the photo and clever theories
and measurements that the young humans eventually advance to the middle-
aged class and that the middle-aged humans advance to the still older class.

While the aliens could learn many things about humans from that pho-
tograph of a single moment in time, it stands to reason that they would learn
vastly more from a video showing all living humans and their activities during
some amount of time. And the longer the video the more and more secrets
would be unlocked, allowing them to study not only how humans age and are
grouped, but how they migrate from one place to another, and if the video were
long enough maybe even how civilizations rise and fall.

Astronomers (human ones at least) have this same difficulty. By using tele-
scopes we have taken photographs (and data) of many stars, and from this in-
formation we have pieced together an amazing history of the Universe. We
have learned that stars are born often times with siblings, and then they enter
a long mid-life phase which is usually very stable, and then they enter a dy-
namic late-life phase, and finally die in, usually, rather beautiful ways. We have
learned, just from our “star snapshot”, about galaxies, and cosmic voids, and
black holes, and supernova, and on and on. But we can make a video, or an
expected video at least, through the use of simulations. Simulations allow us to
use a computer, programmed with the laws of physics, and determine what a
galaxy might have looked like a million or even a billion years ago. ey allow
us to see the past Universe in a way that we could not otherwise see, and to
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extrapolate how the Universe will change in the future which would otherwise
require us to observe it for millions of years.

Simulations are not guaranteed to be correct and they should be approached
thoughtfully. However, with careful considerations and basic assumptions we
can approximate what is and has been happening in Universe near and far.
Simulations are a powerful tool for the astronomer, and it is through these
theoretical methods that I have performed the work detailed in this thesis.

6.2 Collapsing Clusters
In Chapters 2 and 3 I detail the results from more than 500 simulations of star
clusters. Each simulation was started with the stars in that simulation having
different velocities than the stars in the other simulations; in some simulations
the stars were given so much velocity, kinetic energy, that most of the stars
were flung away from the system–traveling too fast for the gravity from the
other stars to keep everything bound. In other simulations the stars were given
the exact velocity so that no stars were lost and they moved in orbits almost as
if they had always been moving in that way, called virial systems; and in other
simulations,called cold systems, the stars were given no initial velocity at all and
in those simulations the stars immediately started to fall toward the center of
the cluster, this is a star cluster in collapse.

6.2.1 Taking a Star Cluster’s Temperature

In Chapter 2 I show that the choice of which velocity, kinetic energy, the system
is initially given makes a dramatic impact on how the system evolves. Because
the simulations had shown the effect of the initial stellar velocity on the evolu-
tion of the cluster it became possible to identify the initial stellar velocities of a
young cluster if that cluster had been observed in detail.

Somewhere in the Large Magellanic Cloud, a neighboring galaxy, is a very
young star cluster called R136. Due to its age and the fact that it has been
observed many times R136 proved to be an ideal observational companion to
this theoretical study. Comparing the measured radius of the cluster core, the
distribution of the stars, the ratio of kinetic to potential energy, and the cluster’s
age to the simulations we were able to determine the initial velocity of the stars
in R136 was most likely between about 0.4 and 0.5 time the velocity they would
have been in virial system.

When this analysis was extended to include 15 more young star clusters the
most common initial velocity was found to be between 0.6 and 0.7 times the
initial velocity in the virial system. If other star clusters are like the ones studied
here then we have learned that nature may tend to make star cluster cool, but
not cold. However, to fully understand the physics in these star clusters we need
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to push the simulations even further; we need to consider the physics of gas and
dust in the cluster, and just how many stars are initially in binaries, for example.
As we add more and more complexity to our simulations, our videos of an alien
system, we will find more and more details about just how nature works.

6.2.2 Why do all of the Big Stars Clump Together?

Chapter 3 is about one thing, what causes all of the most massive stars to clump
together in young clusters? Young cluster are known to mass segregate, that is
the more massive stars tend to be clumped together, but the way they do this
so quickly was not understood. Two ideas had been proposed: e first idea
was that as the young cluster contracts it becomes very dense, and when they
are all very close to each other the most massive stars tend to find the other
massive stars and then stay close to one another, due to gravity. e second
idea suggested was that is the star cluster contracts, little sub-clusters form
and, because of their size, these sub-clusters mass segregate very rapidly and
that effect is preserved after all of the sub-clumps had merged.

Because there was so much data to examine in the simulations we needed
to develop a new, faster method to measure if, and to what degree, a star sys-
tem was mass segregated. at was accomplished the new method is orders of
magnitude faster than the previous method and its results are more robust.

After developing the new method I was able to design an experiment where
I took one simulation and measured the mass segregation of the system at each
moment in time for the length of the simulation. en, after running the sim-
ulation again but for only part of the time, I randomly rearranged the masses,
being sure to not change the velocity or position of each star, and then fin-
ished the simulation. I did this five different times, each time starting from the
same, original setup and moving the masses at a different time. Twice I ran-
domly switched the masses while the star cluster was collapsing, twice I ran-
domly rearranged the masses after the collapse, and once I randomly reordered
the masses at the moment the system was the most dense.

If the amount of mass segregation did not change significantly after swap-
ping the masses at and after the collapse then either our method was not work-
ing or neither proposed idea was correct about how the cluster became mass
segregated; this however was not the case.

If, after switching the masses around before the moment the system was its
most contracted, the mass segregation was significantly changed at the end of
the simulation then the second scenario is correct because in that case it matters
where the masses are before the deepest moment of the collapse. If however,
the mass segregation was not significantly changed at the end of the simulation
then it means the mass segregation occurs when the system is in the deep part
of the collapse and so the first scenario is correct.
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e result showed that the first scenario is more correct. If the masses are
jumbled before the collapse it makes little to no difference on the final mass
segregation of the system.atmeans the important time, formass segregation,
is when the system is very dense and the time before that when the second
proposed idea would be working is of little importance.

6.3 Collapsing Stars

When massive stars die they experience a collapse leading to a supernova and if
they are massive enough they may collapse again into a black hole. In Chapter 5
I look at the effect a supernova will have on a system of three or more stars.
When a star goes supernova it loses much of its mass and so the gravitational
force felt by the other stars is reduced, which can lead to the stars no longer
being gravitationally bound to one another. In Chapter 4 I estimate the number
of intermediate mass black holes, IMBHs, that should be in the local Universe.

6.3.1 Supernova

It is not uncommon for stars to be found in gravitationally bound groups of two,
three or more. If one, or more, of the stars in these small star systems is massive
enough to go supernova then there will be a large and sudden loss of mass in the
system. is mass loss may cause a previously stable system to become unstable
due to the change in the gravitational forces between the stars.

In Chapter 5 we examine triple systems where two stars are close together
and the third star is relatively far away, called a hierarchal triple, the two close
stars can be approximated as a single star from the perspective of the outer star.
Using this method I determine the conditions required for the system to remain
stable after the supernova, and inversely which conditions will lead to the stars
no longer being bound together.

Using this method I ran simulations to determine if it was possible for the
currently observed millisecond pulsar2 J1903+0327 to have been formed in a
triple system which became unstable after a supernova. I was able to determine
that the system could form this way and the likely mass of the stars before the
supernova. Again, by making use of simulations (a video of some part of the
Universe) we are able to learn much more than by observations (a photograph)
alone.

2A millisecond pulsar is a star with rotates once every few milliseconds (one one-thousandths
of a second). ey are important for a variety of reasons, including being very accurate as a clock.
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6.3.2 Intermediate Mass Black Holes

While we have a strong understanding of many things in the Universe there
are many more things we do not understand. An example of something we do
not understand are where all Intermediate Mass Black Holes (IMBHs) are.
ese objects would have a mass between about one hundred and one million
times the mass of our Sun, but as of yet an IMBH has not been definitively ob-
served, where as less massive and more massive black hole have been detected.
However, there is no good theory as to why nature should not produce these
mid-sized black holes so we continue looking for them.

ere have been several suggested candidates in the past which turned out
to be different types of objects. One possible IMBH, HLX-1, is the strongest
candidate to date, with another good candidate in M82 X-1. Using these two
candidates as prototypes, and the assumption that they are both in fact IMBHs,
I estimate in Chapter 4the number of IMBHs that statistically must be out
there in order for these two black holes to observed. In other words, how many
IMBHs would we need to have in the nearby Universe in order to detect two?

is estimate is based on assuming why these black holes are visible and
finding the likelihood that such a detectable system would form and be observ-
able right now. I found that, given our assumptions, there would need to be
around 100 million IMBHs within about 325 million light years. at would
mean around 1000 IMBH per galaxy, if there were an equal number per galaxy.
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De ster is de fundamentele eenheid in sterrenkunde, al het sterrenkundig on-
derzoek is, zoals de naam al zegt, op één of andere manier gerelateerd aan ster-
ren en hun fysische processen. In dit proefschrift is dit niet anders. Om speci-
fiek te zijn, in dit werk focus ik me op verschillende vormen van ineenstorting
gerelateerd aan sterren en groepen van sterren.

De meeste sterren worden geboren in groepen en sommige van deze groe-
pen bestaan uit vele duizenden sterren en kunnen ongelofelijk zwaar zijn. Tij-
dens de vorming van een groep van sterren, ook wel sterrenhoop genoemd,
kan het gebeuren dat de sterrenhoop begint te krimpen, of zelfs ineenstort, en
het ineenstorting van deze sterrenhopen kan interessante systemen opleveren.
Tijdens het ineenstorten van de sterrenhoop gaan de sterren steeds sneller be-
wegen en komen ze dichter bij elkaar. Het feit dat de sterren dichter bij elkaar
komen heeft vele gevolgen bijvoorbeeld: er ontstaan dubbelsterren, ook wel bi-
naire sterren genoemd, of zelfs systemen die bestaan uit meer dan twee om
elkaar draaiende sterren, sterren kunnen uit de sterrenhoop worden gekatapul-
teerd en het is zelfs mogelijk dat sterren op elkaar botsen.

Een ster heeft niet het eeuwige leven en als aan het eind van zijn leven alle
nucleaire brandstof verbruikt is zijn er nog maar een paar dingen die met de ster
kunnen gebeuren. Als de ster lichter is dan 8 tot 10 zonnemassa’s1 dan zal de
ster op een gegeven moment periodisch gaan pulseren en het meeste van wat er
nog van de ster over is zal worden weggeblazen door sterke winden. Als de ster
zwaarder is dan 10 zonnemassa’s zal het meeste van het materiaal verdwijnen in
een alles overwelmende explosie, een zogenaamde supernova. Als het een zeer
zware ster is, van meer dan 20 zonnemassa’s, dan kan er een zwart gat gevormd
worden na de supernova. Dit soort zwarte gaten noemen we stellaire zwarte
gaten2, omdat verwacht wordt dat ze een gewicht hebben dat tussen een paar

1Eén zonnemassa is gelijk aan het gewicht van de zon.
2 Er bestaan ook andere soorten zwarte gaten: Superzware zwarte gaten, deze zijn meer dan

een miljoen keer zwaarder dan de zon en zijn veelvuldig geobserveerd in het centrum van ster-
renstelsels. Als het gewicht van het zwarte gat tussen de honderd en een miljoen zonnemassa’s
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zonnemassa’s en enkele tientallen zonnemassa’s ligt.
Hoofdstukken 2 en 3 van dit proefschrift gaan over het gedrag van sterren

die geboren worden in sterrenhopen, terwijl hoofdstukken 4 en 5 als thema het
overlijden van grote sterren hebben.

In de eerste twee onderzoek ik wat er gebeurt met sterrenhopen vlak nadat
de sterren geboren zijn; hoe waarschijnlijk is het dat sterrenhopen krimpen als
ze net gevormd zijn, en als het waarschijnlijk is dan willen we graag weten
hoeveel ze precies krimpen. Tegelijkertijd onderzoek ik hoe de sterren zichzelf
binnen deze sterrenhopen ordenen. Vaak zien we dat in jonge sterrenhopen de
zwaarste sterren zich in het centrum bevinden en in dit proefschrift hebben we
de meest waarschijnlijke oorzaak hiervoor geïdentificeerd.

In de laatste hoofstukken laat ik zien wat er gebeurt als in een systeem van
drie sterren één van deze sterren een supernova wordt. Verder benader ik het
aantal middelzware zwarte gaten dat we kunnen verwachten in een gebied van
325 miljoen lichtjaar rond de Aarde.

Sterrenkunde wordt vaak geassocieerd met ’s avonds naar de sterren kijken
om te zien wat er met ze gebeurt, maar dat is niet de primaire onderzoeksme-
thode die in dit proefschrift gebruikt wordt, maar in plaats daarvan wordt een
computer gebruikt om te simuleren hoe zwaartekracht en andere fysische pro-
cessen de sterren beïnvloeden. Maar waarom zouden we simulaties gebruiken
als er zoveel sterren zijn waarop we onze telescopen kunnen richten?

7.1 De rol van simulaties

Stelt u zich eens voor dat er buitenaardse wezens zijn die de Aarde bestuderen
en met hun geavanceerde technologie in staat zijn om een foto te maken met
daarop elke levende mens.

Met behulp van deze foto zullen de aliens instaat zijn om te concluderen
dat de meeste mensen tussen de 20 en 60 (aard-) jaren oud zijn. Verder zullen
ze met behulp van de foto, slimme metingen en theorieën, waarschijnlijk ont-
dekken dat de jonge mensen uiteindelijk uit zullen groeien naar mensen van
middelbare leeftijd en de mensen van middelbare leeftijd zullen groeien naar
een oudere leeftijdsklasse.

Hoewel de buitenaardse wezens van dat ene moment, gevangen in de foto,
veel over de mens kunnen leren is het vanzelf sprekend dat ze nog zoveel meer
kunnen leren van een film die het leven van alle mensen en hun activiteiten ge-
durende de lengte van de film laat zien. Hoe langer de film hoe meer geheimen

ligt dan wordt het een middelzwaar zwart gat genoemd–echter er is tot nu toe geen definitieve
observatie van een dergelijk zwart gat gedaan. Op dit moment is HLX-1 de belangrijkste kan-
didaat om als middelzwaar zwart gat geclassificeerd te worden, dit object wordt in meer detail
besproken in Hoofdstuk 4.
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de aliens kunnen ontdekken, wat hun in staat stelt om niet alleen te bestuderen
hoe mensen ouder worden en hoe ze gegroepeerd zijn, maar ook hoe ze zich
verplaatsen van de ene naar de andere plaats en, als de film lang genoeg zou
zijn, zelfs hoe beschavingen ontstaan, groeien en weer ten onder gaan.

Sterrenkundige (althans de menselijke) hebben hetzelfde probleem. Door
gebruik te maken van telescopen hebben we foto’s gemaakt (en data verzameld)
van de vele sterren om ons heen, en met behulp van deze informatie hebben we
de verbazingwekkende geschiedenis van het heelal kunnen achterhalen.

Zo hebben we bijvoorbeeld geleerd dat sterren geboren worden, vaak te-
gelijkertijd met broers en zussen, in een gewelddadige omgeving, waarna ze
tijdens hun middelbare leeftijd een lange periode van relatieve rust kennen.
Maar uiteindelijk komen ze in hun nadagen, welke weer zeer dynamische en
geweldadig zijn en tenslotte sterven ze op een vaak spectaculair mooie manier.
We hebben geleerd over sterrenstelsels, kosmische leegtes, zwarte gaten, super-
nova’s, etc., enkel door gebruik te maken van foto’s. Maar we kunnen een film
maken door gebruik te maken van simulaties. Door computers te gebruiken,
geprogrammeerd met de wetten van de fysica, kunnen we simulaties uitreke-
nen om te bepalen hoe een sterrenstelsel er een miljoen of zelfs een miljard jaar
geleden uitzag. Ze stellen ons in staat om te kijken naar het verleden van het
heelal, iets wat op geen enkel andere manier mogelijk is, en te extrapoleren hoe
het heelal in de toekomst zal veranderen, iets wat eigenlijk miljoenen jaren van
observaties zou vereisen.

Het is niet gegarandeerd dat simulaties correct zijn en we moeten ze zorg-
vuldig en weloverwogen gebruiken. Maar, met gedegen uitgangspunten en een
zorgvuldige benadering kunnen we bepalen wat er in het heelal, zowel dichtbij
als ver weg, in het verleden gebeurt is en in de toekomst nog gaat gebeuren.
Simulaties zijn voor sterrenkundigen een krachtig hulpmiddel en met behulp
van deze theoretische methoden heb ik het werk, zoals beschreven in dit proef-
schrift, kunnen uitvoeren.

7.2 Instortende sterrenhopen

In Hoofdstukken 2 en 3 beschrijf ik de resultaten van meer dan 500 simulaties
van sterrenhopen.

De begin snelheid waarmee we de sterren in de modellen initialiseren is in
elke simulatie anders; in sommige simulaties was de snelheid, ook wel kine-
tische energie genoemd, van de sterren zo hoog dat het grootste deel van de
sterren het systeem uit vloog–ze bewogen zo snel dat de gezamenlijke zwaar-
tekracht van de andere sterren in het systeem niet sterk genoeg was om deze
sterren vast te houden.

In andere simulaties hebben we de sterren precies de snelheid gegeven die
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ervoor zorgt dat ze niet uit het systeem vliegen. In plaats daarvan bewogen de
sterren in die systemen langs banen waarbij het lijkt alsof ze altijd in een der-
gelijke baan bewogen hadden, dit is een zogenaamd viriaal systeem. In weer
andere simulaties, die we koude systemen noemen, hadden de sterren een snel-
heid die een fractie was van de sterren in een viriaal systeem. In onze laatste
set van simulaties hadden de sterren helemaal geen begin snelheid en in deze
simulaties begonnen de sterren, als gevolg van de zwaartekracht, meteen naar
het centrum van de sterrenhoop te vallen. Dergelijke systemen noemen we in-
eenstortende sterrenhopen.

7.2.1 De temperatuur van een sterrenhoop bepalen

In Hoofdstuk 2 laat ik zien dat de keuze van de begin snelheid, kinetische
energie, een dramatisch effect heeft op de manier waarop een sterrenhoop zich
ontwikkeld.

De simulaties hebben ons laten zien dat de keuze van de initiële snelheid
van de sterren een bepalend effect heeft op de evolutie van de sterrenhoop.
Daardoor wordt het mogelijk om de initiële snelheid van sterren in een jonge
sterrenhoop te bepalen als we deze sterrenhoop in detail hebben geobserveerd.

In de Grote Magelhaense Wolk (Large Magellanic Cloud), een naburig
sterrenstelsel, bevindt zich een erg jonge sterrenhoop genaamd R136. Door
zijn leeftijd, en het feit dat R136 veelvuldig is geobserveerd, is dit een ideale
observationele kandidaat voor dit theoretische werk. We hebben de straal van
de kern, de distributie van sterren, de ratio van de kinetische en potentiele ener-
gie en de leeftijd van de sterrenhoop vergeleken. Daardoor waren we instaat om
te bepalen dat toen R136 gevormd werd, de snelheid van de sterren waarschijn-
lijk tussen de 0.4 en 0.5 keer de snelheid was van sterren in een vergelijkbaar
viriaal systeem.

Nadat deze analyse was uitgebreid met 15 andere jonge sterrenhopen bleek
dat de meest voorkomende initiële snelheid tussen de 0.6 en 0.7 keer de begin
snelheid van viriale systemen lag. Als andere sterrenhopen vergelijkbaar zijn
met de sterrenhopen die we hier onderzocht hebben dan hebben we geleerd
dat in de natuur sterrenhopen wel koel, maar niet koud ontstaan.

Echter, om een volledig begrip te krijgen van de fysica in sterrenhopen
moeten we de simulaties uitbreiden; we moeten bijvoorbeeld ook de fysica van
gas en stof in de sterrenhopen meenemen, en weten hoeveel sterren er nou
geboren worden als dubbelsterren. Naarmate we meer en meer complexiteit
aan onze simulaties toevoegen zullen we meer en meer details achterhalen over
hoe de natuur werkt en worden de films van de buitenaardse systemen steeds
realistischer.
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7.2.2 Waarom klonteren alle grote sterren samen?

InHoofdstuk 3 staat één vraag centraal: wat zorgt ervoor dat de zwaarste sterren
in jonge sterrenhopen zich bij elkaar groeperen?

Van jonge sterrenhopen is bekend dat er massa segregatie plaats vindt, dat
betekent dat de zwaardere sterren samenklonteren, maar hoe het komt dat dit
zo snel gebeurt, is nog niet bekend. In dit hoofdstuk worden er twee mogelijke
scenario’s voorgesteld. In het eerste scenario krimpen jonge sterrenhopen en
worden daardoor erg compact. Doordat alle sterren zich vlak bij elkaar bevin-
den zal het sneller gebeuren dat de meest zware sterren in contact komen met
andere zware sterren en als gevolg van de zwaartekracht zullen ze ook dicht bij
elkaar blijven. In het tweede voorgestelde scenario worden er meerdere kleine
sterrenhopen gevormd terwijl de sterrenhoop krimpt. In deze kleine sterrenho-
pen treed vervolgens erg snel massa segregatie op, omdat ze zo klein zijn. En als
uiteindelijk alle kleine sterrenhopen weer zijn samengesmolten tot één enkele
sterrenhoop zou in dit scenario het massa segregatie effect behouden gebleven
moeten zijn.

De simulaties die we voor dit hoofdstuk hebben gedraaid hebben zoveel te
onderzoeken data geproduceerd dat bestaande onderzoeksmethoden niet lan-
ger geschikt waren. Daarom moesten we een nieuwe, snellere methode ontwik-
kelen om te meten of er sprake was van massa segregatie in een sterrenhoop en
zo ja in welke mate. Dit is uiteindelijk gelukt en de nieuwe methode is orders
van grote sneller dan de vorige methoden en bovendien zijn de resultaten van
betere kwaliteit.

Met deze nieuwe methode was ik in staat om een experiment te ontwerpen
waarmee ik van een systeem, tijdens de simulatie, continue de massa segregatie
kon meten. Daarna, nadat de simulatie voor een korte periode opnieuw ge-
draaid was, deed ik de gewichten van de sterren willekeurig herverdelen hierbij
er voor zorgend dat de massa en snelheid niet werden aangepast. Na de herver-
deling werd de simulatie hervat en werd uitgevoerd tot de eindtijd van de si-
mulatie. Deze herverdeling hebben we op verschillende tijdstippen uitgevoerd.
Twee keer deed ik de herverdeling van de gewichten tijdens de ineenstorting
van de sterrenhoop, twee keer deed ik de herverdeling nadat de sterrenhoop
ineengestort was en één keer vond de willekeurige herverdeling plaats op het
moment dat sterrenhoop het meest compact was.

Als de mate van massa segregatie na de herverdeling van de massa’s niet
noemenswaardig was veranderd, tijdens en na de ineenstorting van de sterren-
hoop, dan was er of iets mis met onze methode of geen van beide voorgestelde
scenario’s is correct. Dit bleek echter niet het geval te zijn.

Als we de gewichten herverdelen voordat het systeem ineengestort is en aan
het einde van de simulatie zou blijken dat de massa segregatie significant anders
was dan in de oorspronkelijke simulatie, dan is het tweede scenario de juiste.
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Omdat in dat geval het belangrijk is waar de zwaarste sterren zich bevinden voor
de ineenstorting. Echter als de massa segregatie niet significant veranderd is aan
het einde van de simulatie dan betekent het dat de massa segregatie plaatsvindt
terwijl het systeem aan het ineenstorten is en dan is het eerste scenario de juiste.
De resultaten van de simulaties laten zien dat het eerste scenario het meest
waarschijnlijk is. Als de gewichten door elkaar gegooid zijn voordat het systeem
ineenstort dan zien we nauwelijks verschil in de uiteindelijke massa segregatie
van het systeem. Dat betekent dat het meest belangrijke moment voor massa
segregatie is op het moment dat het systeem het meest dicht en compact is en
op dat moment heeft ons tweede scenario amper invloed.

7.3 Ineenstortende Sterren
Als zware sterren doodgaan, zullen ze ineenstorten met als gevolg een super-
nova en, als ze zwaar genoeg zijn, storten ze daarna nog een keer in en vormen
dan een zwart gat. In Hoofdstuk 5 kijk ik naar de effecten die een supernova
heeft op een systeem van drie of meer sterren. Als een ster een supernova onder-
gaat verliest deze het grootste deel van zijn massa, hierdoor wordt de zwaar-
tekracht die de andere sterren in het systeem voelen verminderd, wat er ver-
volgens toe kan leiden dat sterren niet langer door de zwaartekracht met elkaar
gebonden zijn. In Hoofdstuk 4 benader ik het aantal middelgrote zwarte gaten,
MGZG, dat aanwezig moet zijn in het nabije heelal.

7.3.1 Supernova

Het is niet ongebruikelijk om sterren te vinden die zich vanwege de zwaarte-
kracht in groepen van twee, drie of meer bevinden. Als één, of meerdere, van
de sterren in deze kleine sterrenhopen zwaar genoeg is om een supernova te
vormen dan zal er een significante en snelle reductie optreden in de massa van
deze sterrenhoop. Dit grote verlies in massa kan een stabiele sterrenhoop ver-
anderen in een onstabiele sterrenhoop, doordat door de gewichtsverandering
de zwaartekracht tussen de sterren anders wordt.

InHoofdstuk 5 onderzoekenwe systemen bestaande uit drie sterrenwaarbij
twee sterren zich vlak bij elkaar bevinden en de derde ster relatief ver weg is, dit
wordt ook wel een hiërarchisch drieling systeem genoemd. Voor de buitenste
ster kunnen we de twee sterren die zich vlak bij elkaar bevinden representeren
als een enkele ster. Door gebruik te maken van deze representatie bepaal ik
welke condities vereist zijn om te zorgen dat het systeem na een supernova
stabiel blijft, en andersom welke condities zullen leiden tot een systeem van
sterren dat niet langer door zwaartekracht gebonden is.

Door wederom gebruik te maken van de bovenstaande representatie heb ik
simulaties gedraaid om uit te zoeken of het mogelijk is dat de geobserveerde
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millisecondepulsar3 J1903+0327 gevormd is in een systeem van drie sterren dat
onstabiel geworden is na een supernova. Ik was in staat om te bepalen dat het
systeem inderdaad op deze manier gevorm kan zijn en wat de meeste waar-
schijnlijke massa’s van de sterren waren voor de supernova. Wederom, door ge-
bruik te maken van simulaties (een film van een deel van het heelal) waren we
in staat om veel meer te leren dan wanneer we enkel gebruik gemaakt hadden
van observaties (foto’s).

7.3.2 Middelgrote Zwarte Gaten

Ondanks dat we veel dingen begrijpen in het heelal zijn er nog veel meer dingen
die we niet begrijpen. Een voorbeeld van iets wat we niet begrijpen zijn middel-
grote zwarte gaten (MGZG). Deze objecten zouden een gewicht hebben van
tussen de 100 en een miljoen zonnemassa’s, maar tot nu toe zijn er geen defi-
nitieve observaties van een MGZG, terwijl er wel lichtere en zwaardere zwarte
gaten zijn gedetecteerd. Echter, er is geen goede theorie over waarom de na-
tuur niet instaat zou zijn om dit soort zwarte gaten te vormen dus we blijven
verwachten ze ooit te vinden.

In het verleden zijn er verschillende kandidaten geweest maar elke keer
bleek dat het toch om een ander soort object ging. Op dit moment lijkt HLX-
1 de meest geschikte kandidaat om te worden geclassificeerd als MGZG, op de
voet gevolgd door M82 X-1. Door deze twee kandidaten te gebruiken als pro-
totype, en daarbij de aanname te doen dat het inderdaad MGZGs zijn, maak
ik in Hoofdstuk 4 een schatting van hoeveel MGZGs er statistisch gezien zou-
den moeten zijn. Gebaseerd op het feit dat we deze twee kunnen observeren.
In andere woorden, hoeveel MGZGs moeten er in het nabije heelal zijn willen
we er twee detecteren.

Deze schatting maakt gebruik van aannames waarom deze zwarte gaten
zichtbaar zijn, en de waarschijnlijkheid dat dit soort detecteerbare systemen
juist op dit moment vormen. Ik vond dat, gegeven onze aannames, er rond de
100 miljoen MGZGs zijn binnen een gebied van 325 miljoen lichtjaar. Dat
betekent dat er ongeveer 1000 MGZGs per sterrenstelsel zijn, mits er in elk
sterrenstelsel even veel zouden zijn.

3Een millisecondepulsar is een ster die elke paar milliseconden (een milliseconde is één dui-
zendste van een seconde) om zijn as draait. Dit soort sterren zijn, om verschillende redenen,
belangrijk onder andere omdat ze gebruikt kunnen worden als een zeer precieze klok.
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